Imaging two or more fluorescent biosensors in the same living cell can reveal the spatiotemporal coordination of protein activities. However, using multiple Förster resonance energy transfer (FRET) biosensors together is challenging due to toxicity and the need for orthogonal fluorophores. Here we generate a biosensor component that binds selectively to the activated conformation of three different proteins.
View Article and Find Full Text PDFDyes with environment-sensitive fluorescence have proven useful to study the spatiotemporal dynamics of protein activity in living cells. When attached to proteins, their fluorescence can reflect protein conformational changes, post-translational modifications, or protein interactions. However, the utility of such dye-protein conjugates has been limited because it is difficult to load them into cells.
View Article and Find Full Text PDFThe methylation states of Lys and Arg represent a particularly challenging set of targets to distinguish selectively in water using synthetic receptors. To date, trimethyllysine (Kme3) is the only post translational modification (PTM) of the eight possible methylation states of Lys and Arg that can be recognized selectively. Here, we report the first synthetic receptor capable of selectively recognizing asymmetric dimethylarginine (Rme2a).
View Article and Find Full Text PDFWe have systematically studied how secondary interactions with neighboring lysine (Lys) and arginine (Arg) residues influence the binding and selectivity of the synthetic receptor A2 N for trimethyllysine (Kme3 ). Multiple secondary binding sites on A2 N are formed by carboxylates rigidly positioned over aromatic rings, a motif that has been shown to stabilize salt bridges. We varied the spacing between KmeX (X=0, 3) and an ancillary Lys or Arg and measured binding by isothermal titration calorimetry (ITC).
View Article and Find Full Text PDFSmall molecule receptors are attractive potential sensors of post-translational modifications, including methylated lysine and methylated arginine. Using dynamic combinatorial chemistry (DCC), our lab previously identified a suite of receptors that bind to Kme3 with a range of affinities ranging from low micromolar to high nanomolar, each with a unique selectivity for Kme3 over the lower methylation states. To enable these receptors to have broad application as Kme3 sensors, we have developed a method for their late-stage modification, which we used to synthesize biotinylated derivatives of A2B, A2D, and A2G in a single step.
View Article and Find Full Text PDFA new small molecule receptor, A2N, has been identified that binds specifically to trimethyllysine (Kme3) with sub-micromolar affinity. This receptor was discovered through the iterative redesign of a monomer known to incorporate through dynamic combinatorial chemistry (DCC) into a previously reported receptor for Kme3, A2B. In place of monomer B, the newly designed monomer N introduces an additional cation-π interaction into the binding pocket, resulting in more favorable binding to Kme3 by 1.
View Article and Find Full Text PDF