Mammalian hosts combat bacterial infections through the production of defensive cationic antimicrobial peptides (CAPs). These immune factors are capable of directly killing bacterial invaders; however, many pathogens have evolved resistance evasion mechanisms such as cell surface modification, CAP sequestration, degradation, or efflux. We have discovered that several pathogenic and commensal proteobacteria, including the urgent human threat , secrete a protein (lactoferrin-binding protein B, LbpB) that contains a low-complexity anionic domain capable of inhibiting the antimicrobial activity of host CAPs.
View Article and Find Full Text PDFBiochem Cell Biol
February 2021
In this short review, we outline the major events that led to the development of iron acquisition systems in Gram-negative bacteria and mammals since the beginning of life on earth. Naturally, the interaction between these organisms led to the development of a wonderfully complex set of protein systems used for competition over a once prevalent (but no longer) biocatalytic cofactor. These events led to the appearance of the lactoferrin gene, which has since been exploited into adopting countless new functions, including the provision of highly bactericidal degradation products.
View Article and Find Full Text PDFLactoferrin binding protein B (LbpB) is a bi-lobed outer membrane-bound lipoprotein that comprises part of the lactoferrin (Lf) receptor complex in Neisseria meningitidis and other Gram-negative pathogens. Recent studies have demonstrated that LbpB plays a role in protecting the bacteria from cationic antimicrobial peptides due to large regions rich in anionic residues in the C-terminal lobe. Relative to its homolog, transferrin-binding protein B (TbpB), there currently is little evidence for its role in iron acquisition and relatively little structural and biophysical information on its interaction with Lf.
View Article and Find Full Text PDF