Publications by authors named "Nicholas J Santistevan"

Sensory thresholds enable animals to regulate their behavioral responses to environmental threats. Despite the importance of sensory thresholds for animal behavior and human health, we do not yet have a full appreciation of the underlying molecular-genetic and circuit mechanisms. The larval zebrafish acoustic startle response provides a powerful system to identify molecular mechanisms underlying establishment of sensory thresholds and plasticity of thresholds through mechanisms like habituation.

View Article and Find Full Text PDF

Rett syndrome (RTT), a human neurodevelopmental disorder characterized by severe cognitive and motor impairments, is caused by dysfunction of the conserved transcriptional regulator Methyl-CpG-binding protein 2 (MECP2). Genetic analyses in mouse Mecp2 mutants, which exhibit key features of human RTT, have been essential for deciphering the mechanisms of MeCP2 function; nonetheless, our understanding of these complex mechanisms is incomplete. Zebrafish mecp2 mutants exhibit mild behavioral deficits but have not been analyzed in depth.

View Article and Find Full Text PDF

Background: The ability to filter sensory information into relevant versus irrelevant stimuli is a fundamental, conserved property of the central nervous system and is accomplished in part through habituation learning. Synaptic plasticity that underlies habituation learning has been described at the cellular level, yet the genetic regulators of this plasticity remain poorly understood, as do circuits that mediate sensory filtering.

Methods: To identify genes critical for plasticity, a forward genetic screen for zebrafish genes that mediate habituation learning was performed, which identified a mutant allele, doryp177, that caused reduced habituation of the acoustic startle response.

View Article and Find Full Text PDF

Neuronal activity regulates the phosphorylation states at multiple sites on MeCP2 in postmitotic neurons. The precise control of the phosphorylation status of MeCP2 in neurons is critical for the normal development and function of the mammalian brain. However, it is unknown whether phosphorylation at any of the previously identified sites on MeCP2 can be induced by signals other than neuronal activity in other cell types, and what functions MeCP2 phosphorylation may have in those contexts.

View Article and Find Full Text PDF

Methyl-CpG binding protein 1 (MBD1) regulates gene expression via a DNA methylation-mediated epigenetic mechanism. We have previously demonstrated that MBD1 deficiency impairs adult neural stem/progenitor cell (aNSC) differentiation and neurogenesis, but the underlying mechanism was unclear. Here, we show that MBD1 regulates the expression of several microRNAs in aNSCs and, specifically, that miR-184 is directly repressed by MBD1.

View Article and Find Full Text PDF

Both microRNAs (miRNAs) and epigenetic regulation have important functions in stem cell biology, although the interactions between these two pathways are not well understood. Here, we show that MeCP2, a DNA methyl-CpG-binding protein, can epigenetically regulate specific miRNAs in adult neural stem cells (aNSCs). MeCP2-mediated epigenetic regulation of one such miRNA, miR-137, involves coregulation by Sox2, a core transcription factor in stem cells.

View Article and Find Full Text PDF

Whether and how mechanisms intrinsic to stem cells modulate their proliferation and differentiation are two central questions in stem cell biology. Although exogenous basic fibroblast growth factor 2 (FGF-2/Fgf-2) is commonly used to expand adult neural stem/progenitor cells (NSPCs) in vitro, we do not yet understand the functional significance or the molecular regulation of Fgf-2 expressed endogenously by adult NSPCs. We previously demonstrated that methylated CpG binding protein 1 (MBD1/Mbd1) is a transcriptional repressor of Fgf-2 and is enriched in adult brains.

View Article and Find Full Text PDF

It is well known that Rett Syndrome, a severe postnatal childhood neurological disorder, is mostly caused by mutations in the MECP2 gene. However, how deficiencies in MeCP2 contribute to the neurological dysfunction of Rett Syndrome is not clear. We aimed to resolve the role of MeCP2 epigenetic regulation in postnatal brain development in an Mecp2-deficient mouse model.

View Article and Find Full Text PDF