Aberrations in the centrosome number and structure can readily be detected at all stages of tumor progression and are considered hallmarks of cancer. Centrosome anomalies are closely linked to chromosome instability and, therefore, are proposed to be one of the driving events of tumor formation and progression. This concept, first posited by Boveri over 100 years ago, has been an area of interest to cancer researchers.
View Article and Find Full Text PDFDynactin is an essential part of the cytoplasmic dynein motor that enhances motor processivity and serves as an adaptor that allows dynein to bind cargoes. Much is known about dynactin's interaction with dynein and microtubules, but how it associates with its diverse complement of subcellular binding partners remains mysterious. It has been suggested that cargo specification involves a group of subunits referred to as the "pointed-end complex.
View Article and Find Full Text PDFAims And Background: The pyruvate mimetic dichloroacetate (DCA) has been shown to induce cell death in cancer cells. A number of studies in vitro and in vivo have suggested this molecule may serve as an anticancer agent, but some cells are resistant. Here we wanted to examine the effects of DCA on cancerous and noncancerous cells grown in culture for a prolonged period of exposure and at increasing concentrations.
View Article and Find Full Text PDFWe have previously shown that copper supplementation extends the replicative life span of Saccharomyces cerevisiae when grown under conditions forcing cells to respire. We now show that copper's effect on life span is through Fet3p, a copper containing enzyme responsible for high affinity transport of iron into yeast cells. Life span extensions can also be obtained by supplementing the growth medium with 1mM ferric chloride.
View Article and Find Full Text PDFMicrotubule-associated proteins (MAPs) use particular microtubule-binding domains that allow them to interact with microtubules in a manner specific to their individual cellular functions. Here, we have identified a highly basic microtubule-binding domain in the p150 subunit of dynactin that is only present in the dynactin members of the CAP-Gly family of proteins. Using single-particle microtubule-binding assays, we found that the basic domain of dynactin moves progressively along microtubules in the absence of molecular motors - a process we term 'skating'.
View Article and Find Full Text PDFMost tumor cells are characterized by increased genomic instability and chromosome segregational defects, often associated with hyperamplification of the centrosome and the formation of multipolar spindles. However, extra centrosomes do not always lead to multipolarity. Here, we describe a process of centrosomal clustering that prevented the formation of multipolar spindles in noncancer cells.
View Article and Find Full Text PDFCytoplasmic dynein and dynactin are megadalton-sized multisubunit molecules that function together as a cytoskeletal motor. In the present study, we explore the mechanism of dynein-dynactin binding in vitro and then extend our findings to an in vivo context. Solution binding assays were used to define binding domains in the dynein intermediate chain (IC) and dynactin p150Glued subunit.
View Article and Find Full Text PDFCentrosomal dynactin is required for normal microtubule anchoring and/or focusing independently of dynein. Dynactin is present at centrosomes throughout interphase, but dynein accumulates only during S and G2 phases. Blocking dynein-based motility prevents recruitment of dynactin and dynein to centrosomes and destabilizes both centrosomes and the microtubule array, interfering with cell cycle progression during mitosis.
View Article and Find Full Text PDF