Publications by authors named "Nicholas J Panopoulos"

Bacterial type III secretion systems (T3SSs) are specialized multicomponent nanomachines that mediate the transport of proteins either to extracellular locations or directly into eukaryotic host cell cytoplasm. Erwinia amylovora, the main agent of rosaceous plants fireblight disease, employs an Hrp/Hrc1 T3SS to accomplish its pathogenesis. The regulatory network that controls the activation of this T3SS is largely unknown in E.

View Article and Find Full Text PDF

Background: The central role of Type III secretion systems (T3SS) in bacteria-plant interactions is well established, yet unexpected findings are being uncovered through bacterial genome sequencing. Some Pseudomonas syringae strains possess an uncharacterized cluster of genes encoding putative components of a second T3SS (T3SS-2) in addition to the well characterized Hrc1 T3SS which is associated with disease lesions in host plants and with the triggering of hypersensitive response in non-host plants. The aim of this study is to perform an in silico analysis of T3SS-2, and to compare it with other known T3SSs.

View Article and Find Full Text PDF

Agrobacterium rhizogenes-transformed sugar beet hairy roots, expressing dsRNA from the Beet necrotic yellow vein virus replicase gene, were used as a novel approach to assess the efficacy of three intron-hairpin constructs at conferring resistance to rhizomania disease. Genetically engineered roots were similar in morphology to wild type roots but were characterized by a profound abundancy, rapid growth rate and, in some cases, plagiotropic development. Upon challenge inoculation, seedlings showed a considerable delay in symptom development compared to untransformed or vector-transformed seedlings, expressing dsRNA from an unrelated source.

View Article and Find Full Text PDF

The HrcQB protein from the plant pathogen Pseudomonas syringae is a core component of the bacterial type III secretion apparatus. The core consists of nine proteins widely conserved among animal and plant pathogens which also share sequence and structural similarities with proteins from the bacterial flagellum. Previous studies of the carboxy-terminal domain of HrcQB (HrcQB-C) and its flagellar homologue, FliN-C, have revealed extensive sequence and structural homologies, similar subcellular localization, and participation in analogous protein-protein interaction networks.

View Article and Find Full Text PDF

Recent structural studies and analyses of microbial genomes have consolidated the understanding of the structural and functional versatility of coiled-coil domains in proteins from bacterial type III secretion systems (T3SS). Such domains consist of two or more α-helices forming a bundle structure. The occurrence of coiled-coils in T3SS is considerably higher than the average predicted occurrence in prokaryotic proteomes.

View Article and Find Full Text PDF

Gene clusters encoding various type III secretion system (T3SS) injectisomes, frequently code downstream of the conserved atpase gene for small hydrophilic proteins whose amino acid sequences display a propensity for intrinsic disorder and coiled-coil formation. These properties were confirmed experimentally for a member of this class, the HrpO protein from the T3SS of Pseudomonas syringae pv phaseolicola: HrpO exhibits high alpha-helical content with coiled-coil characteristics, strikingly low melting temperature, structural properties that are typical for disordered proteins, and a pronounced self-association propensity, most likely via coiled-coil interactions, resulting in heterogeneous populations of quaternary complexes. HrpO interacts in vivo with HrpE, a T3SS protein for which coiled-coil formation is also strongly predicted.

View Article and Find Full Text PDF

Type III secretion systems enable plant and animal bacterial pathogens to deliver virulence proteins into the cytosol of eukaryotic host cells, causing a broad spectrum of diseases including bacteremia, septicemia, typhoid fever, and bubonic plague in mammals, and localized lesions, systemic wilting, and blights in plants. In addition, type III secretion systems are also required for biogenesis of the bacterial flagellum. The HrcQ(B) protein, a component of the secretion apparatus of Pseudomonas syringae with homologues in all type III systems, has a variable N-terminal and a conserved C-terminal domain (HrcQ(B)-C).

View Article and Find Full Text PDF