It has become clear in recent decades that the post-translational modification of protein cysteine residues is a crucial regulatory event in biology. Evidence supports the reversible oxidation of cysteine thiol groups as a mechanism of redox-based signal transduction, while the accumulation of proteins with irreversible thiol oxidations is a hallmark of stress-induced cellular damage. The initial formation of cysteine-sulfenic acid (SOH) derivatives, along with the reactive properties of this functional group, serves as a crossroads whereby the local redox environment may dictate the progression of either regulatory or pathological outcomes.
View Article and Find Full Text PDFIn this study the mechanism by which S-nitrosocysteine (CysNO) activates soluble guanylyl cyclase (sGC) has been investigated. CysNO is the S-nitrosated derivative of the amino acid cysteine and has previously been shown to be transported into various cell types by amino acid transport system L. Here we show, using both neuroblastoma and pulmonary artery smooth muscle cells, that CysNO stimulates cGMP formation at low concentrations, but this effect is lost at higher concentrations.
View Article and Find Full Text PDFGel-based detection of protein S-nitrosothiols has relied on the biotin-switch method. This method attempts to replace the nitroso group with a biotin label to allow detection and isolation of S-nitrosated proteins and has been used extensively in the literature. This chapter describes a modification of this method that differs from the original in two major ways.
View Article and Find Full Text PDFStudies have shown that modification of critical cysteine residues in proteins leads to the regulation of protein function. These modifications include disulfide bond formation, glutathionylation, sulfenic and sulfinic acid formation, and S-nitrosation. The biotin switch assay was developed to specifically detect protein S-nitrosation (S.
View Article and Find Full Text PDFThe objective of this study was to determine if prior exposure of rat hearts to S-nitrosocysteine (CysNO) was able to provide protection against reperfusion injury. We probed NO release using the extracellular NO scavenger oxyhemoglobin (oxyHb), and we examined the involvement of the amino acid transport system L (L-AT), a known transporter of CysNO, using the L-AT competitor, L-leucine (L-Leu). Isolated (9- to 12-week-old Wistar male) rat hearts (six to eight per group) were perfused with CysNO (10 microM) for 30 min with or without the L-AT competitor L-Leu (1 mM) before 30 min of ischemia.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
May 2007
This review discusses proteomic methods to detect and identify S-nitrosated proteins. Protein S-nitrosation, the post-translational modification of thiol residues to form S-nitrosothiols, has been suggested to be a mechanism of cellular redox signaling by which nitric oxide can alter cellular function through modification of protein thiol residues. It has become apparent that methods that will detect and identify low levels of S-nitrosated protein in complex protein mixtures are required in order to fully appreciate the range, extent and selectivity of this modification in both physiological and pathological conditions.
View Article and Find Full Text PDFThe pulmonary endothelium is capable of reducing certain redox-active compounds as they pass from the systemic venous to the arterial circulation. This may have important consequences with regard to the pulmonary and systemic disposition and biochemistry of these compounds. Because quinones comprise an important class of redox-active compounds with a range of physiological, toxicological, and pharmacological activities, the objective of the present study was to determine the fate of a model quinone, coenzyme Q0 (Q), added to the extracellular medium surrounding pulmonary arterial endothelial cells in culture, with particular attention to the effect of the cells on the redox status of Q in the medium.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
January 2002
Pulmonary arterial endothelial cells possess transplasma membrane electron transport (TPMET) systems that transfer intracellular reducing equivalents to extracellular electron acceptors. As one aspect of determining cellular mechanisms involved in one such TPMET system in pulmonary arterial endothelial cells in culture, glycolysis was inhibited by treatment with iodoacetate (IOA) or by replacing the glucose in the cell medium with 2-deoxy-D-glucose (2-DG). TPMET activity was measured as the rate of reduction of the extracellular electron acceptor polymer toluidine blue O polyacrylamide.
View Article and Find Full Text PDF