Herein, we present a highly efficient method for constructing the intricate 5-5-6 fused ring system commonly found in the polycyclic furanobutenolide-derived cembranoid and norcembranoid natural product family with remarkable diastereoselectivity, utilizing an intramolecular Diels-Alder reaction as the cornerstone. Notably, employing a propargyl ether tether as the dienophile yields significant enhancements in the transformation process compared to its propargyl ester counterpart, as demonstrated in our previous total synthesis of havellockate. This advancement holds promising implications for future investigations, offering a streamlined pathway for rapidly assembling the tricyclic core characteristic of this diverse family of natural products.
View Article and Find Full Text PDFSecondary organic aerosol (SOA) is ubiquitous in the atmosphere and plays a pivotal role in climate, air quality, and health. The production of low-volatility dimeric compounds through accretion reactions is a key aspect of SOA formation. However, despite extensive study, the structures and thus the formation mechanisms of dimers in SOA remain largely uncharacterized.
View Article and Find Full Text PDFThe complete account of the total syntheses of scabrolide A and yonarolide is disclosed. This article describes an initial approach involving a bio-inspired macrocyclization/transannular Diels-Alder cascade, which ultimately failed due to undesired reactivity during macrocycle construction. Next, the evolution of a second and third strategy, which both involve an initial intramolecular Diels-Alder reaction followed by a late-stage closure of the seven-membered ring of scabrolide A are detailed.
View Article and Find Full Text PDFThe first total synthesis of the furanobutenolide-derived cembranoid diterpenoid havellockate is disclosed. Our convergent strategy employs a Julia-Kocienski olefination to join two enantioenriched fragments to produce a diene that is subsequently used in a propiolic acid esterification/Diels-Alder cascade. This sequence generates the fused carbocyclic core of the natural product in short order.
View Article and Find Full Text PDFWe utilize ab initio quantum mechanics calculations to evaluate a range of plausible mechanistic pathways for the unexpected formation of a [6-4-4] ring system from an enone-olefin photocycloaddition in the synthesis of (-)-scabrolide A, previously reported by our group. We present a mechanistic analysis that is consistent with all current experimental observations, including the photoexcitation, the C-C bond formation, and the associated chemo- and diastereoselectivity.
View Article and Find Full Text PDFThe synthesis of a variety of enantioenriched 1,3-diketospiranes from the corresponding racemic allyl β-ketoesters an interrupted asymmetric allylic alkylation is disclosed. Substrates possessing pendant aldehydes undergo decarboxylative enolate formation in the presence of a chiral Pd catalyst and subsequently participate in an enantio- and diastereoselective, intramolecular aldol reaction to furnish spirocyclic β-hydroxy ketones which may be oxidized to the corresponding enantioenriched diketospiranes. Additionally, this chemistry has been extended to α-allylcarboxy lactam substrates leading to a formal synthesis of the natural product (-)-isonitramine.
View Article and Find Full Text PDFLiquid chromatography/negative electrospray ionization mass spectrometry [LC/(-)ESI-MS] is routinely employed to characterize the identity and abundance of molecular products in secondary organic aerosol (SOA) derived from monoterpene oxidation. Due to a lack of authentic standards, however, commercial terpenoic acids (e.g.
View Article and Find Full Text PDFThe first total synthesis of the norcembranoid diterpenoid scabrolide A is disclosed. The route begins with the synthesis of two chiral pool-derived fragments, which undergo a convergent coupling to expediently introduce all 19 carbon atoms of the natural product. An intramolecular Diels-Alder reaction and an enone-olefin cycloaddition/fragmentation sequence are then employed to construct the fused [5-6-7] linear carbocyclic core of the molecule and complete the total synthesis.
View Article and Find Full Text PDFThe viral envelope protein hemagglutinin (HA) plays a critical role in influenza entry and thus is an attractive target for novel therapeutics. The small molecule tert-butylhydroquinone (TBHQ) has previously been shown to bind to HA and inhibit HA-mediated entry with low micromolar potency. However, enthusiasm for the use of TBHQ has diminished due to the compound's antioxidant properties.
View Article and Find Full Text PDF