Publications by authors named "Nicholas J Galt"

A central goal of science education is to help students develop higher order thinking skills to enable them to face the challenges of life. Accordingly, science instructors are now urged to craft their classrooms such that they serve as not only spaces for disseminating information, but also an arena through which students are encouraged to think scientifically and develop critical-thinking skills. This project aimed to develop a workbook that helps postsecondary students learn endocrinology and engages them in critical thinking.

View Article and Find Full Text PDF

Cortisol, the primary corticosteroid in teleost fishes, is released in response to stressors to elicit local functions, however little is understood regarding muscle-specific responses to cortisol in these fishes. In mammals, glucocorticoids strongly regulate the muscle growth inhibitor, myostatin, via glucocorticoid response elements (GREs) leading to muscle atrophy. Bioinformatics methods suggest that this regulatory mechanism is conserved among vertebrates, however recent evidence suggests some fishes exhibit divergent regulation.

View Article and Find Full Text PDF

Glucocorticoids (GCs) strongly regulate myostatin expression in mammals via glucocorticoid response elements (GREs), and bioinformatics methods suggest that this regulatory mechanism is conserved among many vertebrates. However, the multiple myostatin genes found in some fishes may be an exception. In silico promoter analyses of the three putative rainbow trout (Oncorhynchus mykiss) myostatin promoters have failed to identify putative GREs, suggesting a divergence in myostatin function.

View Article and Find Full Text PDF

Muscle growth is an energetically demanding process that is reliant on intramuscular fatty acid depots in most fishes. The complex mechanisms regulating this growth and lipid metabolism are of great interest for human health and aquaculture applications. It is well established that the skeletal muscle chalone, myostatin, plays a role in lipid metabolism and adipogenesis in mammals; however, this function has not been fully assessed in fishes.

View Article and Find Full Text PDF

Sarcopenia and dynapenia pose significant problems for the aged, especially as life expectancy rises in developed countries. Current therapies are marginally efficacious at best, and barriers to breakthroughs in treatment may result from currently employed model organisms. Here, we argue that the use of indeterminate-growing teleost fish in skeletal muscle aging research may lead to therapeutic advancements not possible with current mammalian models.

View Article and Find Full Text PDF

The zebrafish (Danio rerio) has been used extensively as a model system for developmental studies but, unlike most teleost fish, it grows in a determinate-like manner. A close relative, the giant danio (Devario cf. aequipinnatus), grows indeterminately, displaying both hyperplasia and hypertrophy of skeletal myofibers as an adult.

View Article and Find Full Text PDF

Gelatinases play a role in adipose and muscle hypertrophy and could be involved in tissue remodeling in response to high-fat diet (HFD) intake. This study tested potential roles of gelatinases (matrix metalloproteinses-2 and -9 [MMP-2 and -9]) in relationship to an antigrowth factor [myostatin (MSTN)] known to be dysregulated in relation to HFD-induced obesity (HFDIO) propensity. In vitro and ex vivo analyses demonstrated that MMP-9 increased mature MSTN levels, indicating a potential role of gelatinases in MSTN activation in vivo.

View Article and Find Full Text PDF

Although the zebrafish (Danio rerio) has been widely utilized as a model organism for several decades, there is little information available on physiological variation underlying genetic variation among the most commonly used inbred strains. This study evaluated growth performance using physiological and molecular markers of growth in response to fasting in six commonly used zebrafish strains [AB, TU, TL, SJA, WIK, and petstore (PET) zebrafish]. Fasting resulted in a standard decrease in whole blood glucose levels, a typical vertebrate glucose metabolism pattern, in AB, PET, TL, and TU zebrafish strains.

View Article and Find Full Text PDF