Publications by authors named "Nicholas J Cundy"

Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) functions as a critical stress sentinel that coordinates cell survival, inflammation, and immunogenic cell death (ICD). Although the catalytic function of RIPK1 is required to trigger cell death, its non-catalytic scaffold function mediates strong pro-survival signaling. Accordingly, cancer cells can hijack RIPK1 to block necroptosis and evade immune detection.

View Article and Find Full Text PDF
Article Synopsis
  • Tuberculosis (TB) is a serious global health issue, causing over 10.6 million new cases and 1.4 million deaths in 2021, worsened by the rise of drug-resistant strains like MDR-TB and XDR-TB.
  • New compounds called BGAz, derived from a whole cell phenotypic screen, have shown strong bactericidal effects against both drug-sensitive and drug-resistant TB with no emerging drug resistance.
  • These BGAz compounds work by disrupting the mycobacterial cell envelope and mycolic acid synthesis, showing a distinct action from current treatments, along with favorable toxicological and pharmacokinetic profiles for future chemotherapy development.
View Article and Find Full Text PDF

Transglutaminase 2 (TG2) is a multifunctional enzyme primarily responsible for crosslinking proteins. Ubiquitously expressed in humans, TG2 can act either as a transamidase by crosslinking two substrates through formation of an N(ɣ-glutaminyl)lysine bond or as an intracellular G-protein. These discrete roles are tightly regulated by both allosteric and environmental stimuli and are associated with dramatic changes in the conformation of the enzyme.

View Article and Find Full Text PDF

Transglutaminase 2 (TG2), also referred to as tissue transglutaminase, plays crucial roles in both protein crosslinking and cell signalling. It is capable of both catalysing transamidation and acting as a G-protein, these activities being conformation-dependent, mutually exclusive, and tightly regulated. The dysregulation of both activities has been implicated in numerous pathologies.

View Article and Find Full Text PDF

Tissue transglutaminase (TG2) is a multifunctional protein that catalyses protein crosslinking in the extracellular matrix, and functions as an intracellular G-protein. While both activities have been associated with human diseases, its role as a G-protein has been linked to cancer stem cell survival and maintenance of a metastatic phenotype. Recently we have shown that targeted covalent inhibitors (TCIs) can react selectively with the enzyme active site of TG2, to allosterically abolish its ability to bind GTP.

View Article and Find Full Text PDF

The metabolism of l-tryptophan to -formyl-l-kynurenine by indoleamine-2,3-dioxygenase 1 (IDO1) is thought to play a critical role in tumour-mediated immune suppression. Whilst there has been significant progress in elucidating the overall enzymatic mechanism of IDO1 and related enzymes, key aspects of the catalytic cycle remain poorly understood. Here we report the design, synthesis and biological evaluation of a series of tryptophan analogues which have the potential to intercept putative intermediates in the metabolism of 1 by IDO1.

View Article and Find Full Text PDF