JMIR Mhealth Uhealth
January 2019
Background: There is a pressing need to reduce the hospitalization rate of heart failure patients to limit rising health care costs and improve outcomes. Tracking physiologic changes to detect early deterioration in the home has the potential to reduce hospitalization rates through early intervention. However, classical approaches to in-home monitoring have had limited success, with patient adherence cited as a major barrier.
View Article and Find Full Text PDFBackground: Wearable and connected in-home medical devices are typically utilized in uncontrolled environments and often measure physiologic signals at suboptimal locations. Motion artifacts and reduced signal-to-noise ratio, compared with clinical grade equipment, results in a highly variable signal quality that can change significantly from moment to moment. The use of signal quality classification algorithms and robust feature delineation algorithms designed to achieve high accuracy on poor quality physiologic signals can prove beneficial in addressing concerns associated with measurement accuracy, confidence, and clinical validity.
View Article and Find Full Text PDF