Am J Physiol Lung Cell Mol Physiol
February 2005
Platelet-derived growth factor (PDGF)-BB-stimulated glycosaminoglycan (GAG) synthesis/secretion in fetal lung fibroblasts is dependent on sequential activation of the PDGF beta-receptor, phosphatidylinositol 3-kinase (PI3K), the serine/threonine kinase Akt-1,2, and the GTPase Rab3D. Because the Akt pathway has been implicated in cell survival mechanisms, we investigated whether the pathway regulating GAG synthesis/secretion was antiapoptotic. PDGF-BB treatment protected fetal lung fibroblasts against serum starvation-induced apoptosis, whereas wortmannin, an inhibitor of PI3K, abrogated this protective effect.
View Article and Find Full Text PDFPreviously we have demonstrated that the phosphoinositide 3-kinase (PI-3K) signal-transduction pathway mediates platelet-derived growth factor (PDGF)-BB-induced glycosaminoglycan (GAG) synthesis in fetal lung fibroblasts. In the present study we further investigated the signal-transduction pathway(s) that results in PDGF-BB-induced GAG synthesis. Over-expression of a soluble PDGF beta-receptor as well as a mutated form of the beta-receptor, unable to bind PI-3K, diminished GAG synthesis in fetal lung fibroblasts subsequent to PDGF-BB stimulation.
View Article and Find Full Text PDF