Publications by authors named "Nicholas J Baumhover"

Purpose: The lead-203 (Pb)/lead-212 (Pb) elementally identical radionuclide pair has gained significant interest in the field of image-guided targeted alpha-particle therapy for cancer. Emerging evidence suggests that Pb-labeled peptide-based radiopharmaceuticals targeting somatostatin receptor subtype 2 (SSTR2) may provide improved effectiveness compared to beta-particle-based therapies for neuroendocrine tumors (NETs). This study aims to improve the performance of SSTR2-targeted radionuclide imaging and therapy through structural modifications to Tyr-octreotide (TOC)-based radiopharmaceuticals.

View Article and Find Full Text PDF

Pb and Pb have emerged as promising theranostic isotopes for image-guided α-particle radionuclide therapy for cancers. Here, we report a cyclen-based Pb specific chelator (PSC) that is conjugated to tyr-octreotide via a PEG linker (PSC-PEG-T) targeting somatostatin receptor subtype 2 (SSTR2). PSC-PEG-T could be labeled efficiently to purified Pb at 25 °C and also to Bi at 80 °C.

View Article and Find Full Text PDF

Radiotherapy can facilitate the immune recognition of immunologically "cold" tumors and enhance the efficacy of anti-PD-1 and anti-CTLA-4 immune checkpoint inhibitors (ICIs) in melanoma. Systemic administration of receptor-targeted radionuclide therapy has the potential to selectively deliver radionuclides to multiple tumors throughout the body in metastatic settings. By triggering immunologic cell death and increasing the immune susceptibility of surviving tumor cells in these locations, targeted radionuclide therapies may overcome resistance to ICIs and render immunologically "cold" tumors throughout the body responsive to ICIs and immunologically "hot".

View Article and Find Full Text PDF

PEGylated polylysine peptides of the general structure PEG30 kDa-Cys-Trp-LysN (N = 10 to 30) were used to form fully condensed plasmid DNA (pGL3) polyplexes at a ratio of 1 nmol of peptide per μg of DNA (ranging from N:P 3:1 to 10:1 depending on Lys repeat). Co-administration of 5 to 80 nmols of excess PEG-peptide with fully formed polyplexes inhibited the liver uptake of (125)I-pGL3-polyplexes. The percent inhibition was dependent on the PEG-peptide dose and was saturable, consistent with inhibition of scavenger receptors.

View Article and Find Full Text PDF

The pharmacokinetics (PK), biodistribution and metabolism of non-viral gene delivery systems administered systemically are directly related to in vivo efficacy. The magnitude of luciferase expression in the liver of mice following a tail vein dose of a polyplex, composed of 1 μg of pGL3 in complex with a polyethylene glycol (PEG) polyacridine peptide, followed by a delayed hydrodynamic (HD) stimulation (1-9 h), depends on the HD stimulation delay time and the structure of the polyacridine peptide. As demonstrated in the present study, the PEG length and the type of chemical linkage joining PEG to the polyacridine peptide dramatically influence the in vivo gene transfer efficiency.

View Article and Find Full Text PDF

Radionuclide chelators (DOTA, NOTA) functionalized with a monofluorocyclooctyne group were prepared. These materials reacted rapidly and in high yield with a fully deprotected azide-modified peptide via Cu-free click chemistry under mild reaction conditions (aqueous solution, room temperature). The resulting bioconjugates bind with high affinity and specificity to their cell-surface receptor targets in vitro and appear stable to degradation in mouse serum over 3h of incubation at 37°C.

View Article and Find Full Text PDF

Ribonucleic acid (RNA) aptamers with high affinity and specificity for cancer-specific cell-surface antigens are promising reagents for targeted molecular imaging of cancer using positron emission tomography (PET). For this application, aptamers must be conjugated to chelators capable of coordinating PET-radionuclides (e.g.

View Article and Find Full Text PDF

Cationic condensing peptides and polymers bind electrostatically to DNA to form cationic polyplexes. While many cationic polyplexes are able to achieve in vitro transfection mediated through electrostatic interactions, few have been able to mediate gene transfer in vivo. The present study describes the development and testing of polyacridine PEG-peptides that bind to plasmid DNA by intercalation resulting in electronegative open polyplex DNA.

View Article and Find Full Text PDF

The combination of a polyacridine peptide modified with a melittin fusogenic peptide results in a potent gene transfer agent. Polyacridine peptides of the general formula (Acr-X)(n)-Cys were prepared by solid-phase peptide synthesis, where Acr is Lys modified on its epsilon-amine with acridine, X is Arg, Leu, or Lys and n is 2, 3, or 4 repeats. The Cys residue was modified by either a maleimide-melittin or a thiolpyridine-Cys-melittin fusogenic peptide resulting in reducible or non-reducible polyacridine-melittin peptides.

View Article and Find Full Text PDF