Publications by authors named "Nicholas J Anthis"

Despite increases in screening and advances in treatment, breast cancer continues to be the most common cancer and cause of cancer deaths among women worldwide, and breast cancer rates have remained steady for decades. A new focus on population-level primary prevention is needed to tackle this disease at the most fundamental level. Unfortunately, only a small fraction of breast cancer research funds currently go to prevention.

View Article and Find Full Text PDF

Myriad biological processes proceed through states that defy characterization by conventional atomic-resolution structural biological methods. The invisibility of these 'dark' states can arise from their transient nature, low equilibrium population, large molecular weight, and/or heterogeneity. Although they are invisible, these dark states underlie a range of processes, acting as encounter complexes between proteins and as intermediates in protein folding and aggregation.

View Article and Find Full Text PDF

Calmodulin (CaM), the prototypical calcium sensing protein in eukaryotes, comprises two domains separated by a short flexible linker, which allows CaM to assume a wide range of extended and compact conformations. Here we use NMR relaxation measurements to explore the role of the linker in CaM function and dynamics. Using paramagnetic relaxation enhancement (PRE) measurements, we examine the effect of changes in the length and rigidity of the linker on the transient association between the two domains of Ca(2+)-bound CaM (CaM-4Ca(2+)).

View Article and Find Full Text PDF

Quantitative studies in molecular and structural biology generally require accurate and precise determination of protein concentrations, preferably via a method that is both quick and straightforward to perform. The measurement of ultraviolet absorbance at 280 nm has proven especially useful, since the molar absorptivity (extinction coefficient) at 280 nm can be predicted directly from a protein sequence. This method, however, is only applicable to proteins that contain tryptophan or tyrosine residues.

View Article and Find Full Text PDF

The information content in 1-D solution X-ray scattering profiles is generally restricted to low-resolution shape and size information that, on its own, cannot lead to unique 3-D structures of biological macromolecules comparable to all-atom models derived from X-ray crystallography or NMR spectroscopy. Here we show that contrast-matched X-ray scattering data collected on a protein incorporating specific heavy-atom labels in 65% aqueous sucrose buffer can dramatically enhance the power of conventional small- and wide-angle X-ray scattering (SAXS/WAXS) measurements. Under contrast-matching conditions the protein is effectively invisible and the main contribution to the X-ray scattering intensity arises from the heavy atoms, allowing direct extraction of pairwise distances between them.

View Article and Find Full Text PDF

Calmodulin (CaM) is the universal calcium sensor in eukaryotes, regulating the function of numerous proteins. Crystallography and NMR show that free CaM-4Ca(2+) exists in an extended conformation with significant interdomain separation, but clamps down upon target peptides to form a highly compact structure. NMR has revealed substantial interdomain motions in CaM-4Ca(2+), enabled by a flexible linker.

View Article and Find Full Text PDF

The measurement of (1)H transverse paramagnetic relaxation enhancement (PRE) has been used in biomolecular systems to determine long-range distance restraints and to visualize sparsely-populated transient states. The intrinsic flexibility of most nitroxide and metal-chelating paramagnetic spin-labels, however, complicates the quantitative interpretation of PREs due to delocalization of the paramagnetic center. Here, we present a novel, disulfide-linked nitroxide spin label, R1p, as an alternative to these flexible labels for PRE studies.

View Article and Find Full Text PDF

Integrins are essential adhesion receptors found on the surfaces of all metazoan cells. As regulators of cell migration and extracellular matrix assembly, these membrane-spanning heterodimers are critical for embryonic development, tissue repair and immune responses. Signals transmitted by integrins from outside to inside the cell promote cell survival and proliferation, but integrin affinity for extracellular ligands can also be controlled by intracellular cues.

View Article and Find Full Text PDF

The adhesion of integrins to the extracellular matrix is regulated by binding of the cytoskeletal protein talin to the cytoplasmic tail of the β-integrin subunit. Structural studies of this interaction have hitherto largely focused on the β3-integrin, one member of the large and diverse integrin family. Here, we employ NMR to probe interactions and dynamics, revealing marked structural diversity in the contacts between β1A, β1D, and β3 tails and the Talin1 and Talin2 isoforms.

View Article and Find Full Text PDF

Integrins are cell surface receptors crucial for cell migration and adhesion. They are activated by interactions of the talin head domain with the membrane surface and the integrin β cytoplasmic tail. Here, we use coarse-grained molecular dynamic simulations and nuclear magnetic resonance spectroscopy to elucidate the membrane-binding surfaces of the talin head (F2-F3) domain.

View Article and Find Full Text PDF

Integrins are large membrane-spanning receptors fundamental to cell adhesion and migration. Integrin adhesiveness for the extracellular matrix is activated by the cytoskeletal protein talin via direct binding of its phosphotyrosine-binding-like F3 domain to the cytoplasmic tail of the beta integrin subunit. The phosphotyrosine-binding domain of the signaling protein Dok1, on the other hand, has an inactivating effect on integrins, a phenomenon that is modulated by integrin tyrosine phosphorylation.

View Article and Find Full Text PDF
Article Synopsis
  • The integrin family of cell adhesion molecules can exist in low- and high-affinity states, and their activation involves the talin FERM domain binding to beta-integrin sequences.
  • Recent discoveries show that kindlin proteins are also crucial for integrin activation alongside talin, with kindlins sharing similar structures but having unique inserts in their F1 domains.
  • Studies reveal the structure of the kindlin-1 F0 domain, which resembles the talin F0 and F1 domains, and show that this domain is vital for kindlin-1's role in integrin activation and localization at focal adhesions.
View Article and Find Full Text PDF

Fundamental to cell adhesion and migration, integrins are large heterodimeric membrane proteins that uniquely mediate inside-out signal transduction, whereby adhesion to the extracellular matrix is activated from within the cell by direct binding of talin to the cytoplasmic tail of the beta integrin subunit. Here, we report the first structure of talin bound to an authentic full-length beta integrin tail. Using biophysical and whole cell measurements, we show that a specific ionic interaction between the talin F3 domain and the membrane-proximal helix of the beta tail disrupts an integrin alpha/beta salt bridge that helps maintain the integrin inactive state.

View Article and Find Full Text PDF

Talin is a large flexible rod-shaped protein that activates the integrin family of cell adhesion molecules and couples them to cytoskeletal actin. It exists in both globular and extended conformations, and an intramolecular interaction between the N-terminal F3 FERM subdomain and the C-terminal part of the talin rod contributes to an autoinhibited form of the molecule. Here, we report the solution structure of the primary F3 binding domain within the C-terminal region of the talin rod and use intermolecular nuclear Overhauser effects to determine the structure of the complex.

View Article and Find Full Text PDF

Blogs have stormed the Internet, providing an interactive medium for rapid and wide-reaching information dispersal. But is there a place for blogs in academia?

View Article and Find Full Text PDF

Integrins play a fundamental role in cell migration and adhesion; knowledge of how they are regulated and controlled is vital for understanding these processes. Recent work showed that Dok1 negatively regulates integrin activation, presumably by competition with talin. To understand how this occurs, we used NMR spectroscopy and x-ray crystallography to investigate the molecular details of interactions with integrins.

View Article and Find Full Text PDF

Background: Lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) are bioactive lipid signaling molecules implicated in tumor dissemination. Membrane-type matrix metalloproteinase 1 (MT1-MMP) is a membrane-tethered collagenase thought to be involved in tumor invasion via extracellular matrix degradation. In this study, we investigated the molecular requirements for LPA- and S1P-regulated tumor cell migration in two dimensions (2D) and invasion of three-dimensional (3D) collagen matrices and, in particular, evaluated the role of MT1-MMP in this process.

View Article and Find Full Text PDF

The endothelial cell (EC)-derived tissue inhibitor of metalloproteinase-2 (TIMP-2) and pericyte-derived TIMP-3 are shown to coregulate human capillary tube stabilization following EC-pericyte interactions through a combined ability to block EC tube morphogenesis and regression in three-dimensional collagen matrices. EC-pericyte interactions strongly induce TIMP-3 expression by pericytes, whereas ECs produce TIMP-2 in EC-pericyte cocultures. Using small interfering RNA technology, the suppression of EC TIMP-2 and pericyte TIMP-3 expression leads to capillary tube regression in these cocultures in a matrix metalloproteinase-1 (MMP-1)-, MMP-10-, and ADAM-15 (a disintegrin and metalloproteinase-15)-dependent manner.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session0g385os0j6tamssv903i3denf75a7o6t): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once