Objectives: Patient preferences have the potential to influence the development of new treatments for locally advanced/metastatic urothelial carcinoma (la/mUC), and therefore we explored how patients with la/mUC value different attributes of first-line treatments.
Methods: An online preference survey and multidimensional thresholding (MDT) exercise were developed following a targeted literature review and qualitative interviews with physicians, patients with la/mUC, and their caregivers. Treatment attributes included two benefits (overall response rate [ORR], pain related to bladder cancer [scored 0-100; 100 being the worst pain possible]) and four treatment-related risks (peripheral neuropathy, severe side effects, mild to moderate nausea, mild to moderate skin reactions).
Background: Mismatch repair deficiency (dMMR) and microsatellite instability-high (MSI-H) occur in a subset of cancers and have been shown to confer sensitivity to immune checkpoint inhibition (ICI); however, there is a lack of prospective data in urothelial carcinoma (UC).
Methods And Analysis: We performed a systematic review to estimate the prevalence of dMMR and MSI-H in UC, including survival and clinical outcomes. We searched for studies published up to 26 October 2022 in major scientific databases.
Am Soc Clin Oncol Educ Book
April 2022
Biochemical recurrence develops in almost one-third of men with prostate cancer after treatment with local therapy. There are numerous options for management, including surveillance, salvage radiation, androgen deprivation therapy (ADT), and clinical trials. This article reviews the current approaches to radiation therapy, ADT, and molecular imaging in men with biochemically recurrent prostate cancer.
View Article and Find Full Text PDFBackground: VeriStrat test is a serum assay which uses a mass spectrometry (MS)-based proteomic signature derived from machine learning. It is currently used as a prognostic marker for patients with non-small cell lung cancer (NSCLC) receiving chemotherapy. However, little is known about its role for NSCLC patients receiving immune checkpoint inhibitors (ICIs).
View Article and Find Full Text PDFBackground: Tissue tumor mutational burden (TMB) has emerged as a potential biomarker predicting response to anti-programmed cell death-1 protein receptor (PD-1)/programmed cell death-1 protein ligand (PD-L1) therapy, but few studies have explored using circulating tumor DNA (ctDNA) TMB in non-small cell lung cancer (NSCLC).
Materials And Methods: A total of 136 patients with NSCLC with ctDNA testing were retrospectively evaluated from a single institution, along with a validation cohort from a second institution. ctDNA TMB was derived using the number of detected mutations over the DNA sequencing length.
Prostate cancer responds to therapies that suppress androgen receptor (AR) activity (androgen deprivation therapy, ADT) but invariably progresses to castration-resistant prostate cancer (CRPC). The Tec family nonreceptor tyrosine kinase BMX is activated downstream of PI3K and has been implicated in regulation of multiple pathways and in the development of cancers including prostate cancer. However, its precise mechanisms of action, and particularly its endogenous substrates, remain to be established.
View Article and Find Full Text PDFBackground: Previous reports have documented protein phosphatase 1 (PP1) as an essential androgen receptor (AR) activator. However, more systemic studies are needed to further define PP1 effects on AR, particularly in the settings of prostate cancer cells and under conditions mimicking androgen ablation.
Methods: PP1 effects on AR protein expression, degradation, ubiquitination, and stabilization were examined in non-prostate cancer cells, followed by validation on exogenous settings in androgen-sensitive (LNCaP and VCaP) and castration-resistant (C4-2) prostate cancer cells.
The phosphoprotein phosphatases are emerging as important androgen receptor (AR) regulators in prostate cancer (PCa). We reported previously that the protein phosphatase 1 catalytic subunit (PP1α) can enhance AR activity by dephosphorylating a site in the AR hinge region (Ser650) and thereby decrease AR nuclear export. In this study we show that PP1α increases the expression of wildtype as well as an S650A mutant AR, indicating that it is acting through one or more additional mechanisms.
View Article and Find Full Text PDFPurpose: Galeterone inhibits the enzyme CYP17A1 and is currently in phase II clinical trials for castration-resistant prostate cancer (CRPC). Galeterone is also a direct androgen receptor (AR) antagonist and may enhance AR degradation. This study was undertaken to determine the molecular basis for AR effects and their therapeutic potential.
View Article and Find Full Text PDFThe nonreceptor tyrosine kinase BMX (bone marrow tyrosine kinase gene on chromosome X) is abundant in various cell types and activated downstream of phosphatidylinositol-3 kinase (PI3K) and the kinase Src, but its substrates are unknown. Positional scanning peptide library screening revealed a marked preference for a priming phosphorylated tyrosine (pY) in the -1 position, indicating that BMX substrates may include multiple tyrosine kinases that are fully activated by pYpY sites in the kinase domain. BMX phosphorylated focal adhesion kinase (FAK) at Tyr⁵⁷⁷ subsequent to its Src-mediated phosphorylation at Tyr⁵⁷⁶.
View Article and Find Full Text PDFBMX is a member of the TEC family of nonreceptor tyrosine kinases. We have used structure-based drug design in conjunction with kinome profiling to develop a potent, selective, and irreversible BMX kinase inhibitor, BMX-IN-1, which covalently modifies Cys496. BMX-IN-1 inhibits the proliferation of Tel-BMX-transformed Ba/F3 cells at two digit nanomolar concentrations but requires single digit micromolar concentrations to inhibit the proliferation of prostate cancer cell lines.
View Article and Find Full Text PDFPreviously available androgen receptor (AR) antagonists (bicalutamide, flutamide, and nilutamide) have limited activity against AR in prostate cancers that relapse after castration [castration resistant prostate cancer (CRPC)]. However, recent AR competitive antagonists such as MDV3100, generated through chemical modifications to the current AR ligands, appear to have increased activity in CRPC and have novel mechanisms of action. Using pharmacophore models and a refined homology model of the antagonist-liganded AR ligand binding domain, we carried out in silico screens of small molecule libraries and report here on the identification of a series of structurally distinct nonsteroidal small molecule competitive AR antagonists.
View Article and Find Full Text PDFRelapse of castration-resistant prostate cancer (CRPC) that occurs after androgen deprivation therapy of primary prostate cancer can be mediated by reactivation of the androgen receptor (AR). One important mechanism mediating this AR reactivation is intratumoral conversion of the weak adrenal androgens DHEA and androstenedione into the AR ligands testosterone and dihydrotestosterone. DHEA and androstenedione are synthesized by the adrenals through the sequential actions of the cytochrome P450 enzymes CYP11A1 and CYP17A1, so that CYP17A1 inhibitors such as abiraterone are effective therapies for CRPC.
View Article and Find Full Text PDF