Publications by authors named "Nicholas Hunter"

Balancing kinetics, a crucial priority in catalysis, is frequently achieved by sacrificing activity of elementary steps to suppress side reactions and enhance catalyst stability. Dry reforming of methane (DRM), a process operated at high temperature, usually involves fast C-H activation but sluggish carbon removal, resulting in coke deposition and catalyst deactivation. Studies focused solely on catalyst innovation are insufficient in addressing coke formation efficiently.

View Article and Find Full Text PDF

Informal caregivers of individuals affected by psychotic disorder can play a key role in the recovery process. However, little research has been conducted on the lived experiences of carers and family members. We conducted a bottom-up (from lived experience to theory) review of first-person accounts, co-written between academics and experts by experience, to identify key experiential themes.

View Article and Find Full Text PDF

This work presents a novel, to the best of our knowledge, cross correlation technique for determining the laser heating-induced Raman shift laser power coefficient ψ required for energy transport state-resolved Raman (ET-Raman) methods. The cross correlation method determines the measure of similarity between the experimental intensity data and a varying test Gaussian signal. By circumventing the errors inherent in any curve fittings, the cross correlation method quickly and accurately determines the location where the test Gaussian signal peak is most like the Raman peak, thereby revealing the peak location and ultimately the value of ψ.

View Article and Find Full Text PDF

This work reports the dynamic behaviors of graphene aerogel (GA) microfibers during and after continuous wave (CW) laser photoreduction. The reduction results in one-order of magnitude increase in the electrical conductivity. The experimental results reveal the exact mechanisms of photoreduction as it occurs: immediate photochemical removal of oxygen functional groups causing a sharp decrease in electrical resistance and subsequent laser heating that facilitates thermal rearrangement of GO sheets towards more graphene-like domains.

View Article and Find Full Text PDF

In the last two decades, tremendous research has been conducted on the discovery, design and synthesis, characterization, and applications of two-dimensional (2D) materials. Thermal conductivity and interface thermal conductance/resistance of 2D materials are two critical properties in their applications. Raman spectroscopy, which measures the inelastic scattering of photons by optical phonons, can distinct a 2D material's temperature from its surrounding materials', featuring unprecedented spatial resolution (down to the atomic level).

View Article and Find Full Text PDF

Psychosis is the most ineffable experience of mental disorder. We provide here the first co-written bottom-up review of the lived experience of psychosis, whereby experts by experience primarily selected the subjective themes, that were subsequently enriched by phenomenologically-informed perspectives. First-person accounts within and outside the medical field were screened and discussed in collaborative workshops involving numerous individuals with lived experience of psychosis as well as family members and carers, representing a global network of organizations.

View Article and Find Full Text PDF

Raman spectroscopy has been widely used to measure thermophysical properties of 2D materials. The local intense photon heating induces strong thermal nonequilibrium between optical and acoustic phonons. Both first principle calculations and recent indirect Raman measurements prove this phenomenon.

View Article and Find Full Text PDF

This mixed methods study explored challenges faced by pastoral care workers. A development phase preceded an on-line survey completed by chaplains and pastoral practitioners (n = 40) employed by a major Australian aged care provider. The survey covered the purpose of pastoral care, key tasks and resources, current and future challenges, and participants' responses to challenges.

View Article and Find Full Text PDF

Liquid-solid interface energy transport has been a long-term research topic. Past research mostly focused on theoretical studies while there are only a handful of experimental reports because of the extreme challenges faced in measuring such interfaces. Here, by constructing nanosecond energy transport state-resolved Raman spectroscopy (nET-Raman), we characterize thermal conductance across a liquid-solid interface: water-WS nm film.

View Article and Find Full Text PDF

This work reports the interfacial thermal conductance () and radiative recombination efficiency (β), also known as photoluminescence quantum yield (PL QY), of monolayer WSe flakes supported by fused silica substrates via energy-transport state-resolved Raman (ET-Raman). This is the first known work to consider the effect of radiative electron-hole recombination on the thermal transport characteristics of single-layer transition-metal dichalcogenides (TMDs). ET-Raman uses a continuous-wave laser for steady-state heating as well as nanosecond and picosecond lasers for transient energy transport to simultaneously heat the monolayer flakes and extract the Raman signal.

View Article and Find Full Text PDF

We report on the use of graphene for room temperature on-chip detection and generation of pulsed terahertz (THz) frequency radiation, exploiting the fast carrier dynamics of light-generated hot carriers, and compare our results with conventional low-temperature-grown gallium arsenide (LT-GaAs) photoconductive (PC) switches. Coupling of picosecond-duration pulses from a biased graphene PC switch into Goubau line waveguides is also demonstrated. A Drude transport model based on the transient photoconductance of graphene is used to describe the mechanism for both detection and generation of THz radiation.

View Article and Find Full Text PDF

The primate visual cortex exhibits a remarkable degree of interconnectivity. Each visual area receives an average of 10 to 15 inputs, many of them from cortical areas with overlapping, but not identical, functional properties. In this study, we assessed the functional significance of this anatomical parallelism to the middle temporal area (MT) of the macaque visual cortex.

View Article and Find Full Text PDF

Surround suppression contributes to important functions in visual processing, such as figure-ground segregation; however, this benefit comes at the cost of decreased neuronal sensitivity. Studies of receptive fields at several levels of the visual hierarchy have demonstrated that surround suppression is reduced for low contrast stimuli, thereby improving neuronal sensitivity. We investigated whether this reduction of surround suppression reflects a general processing strategy to boost sensitivity for weak signals by summing them over a larger region of the visual field (spatial integration) or if the reduction is limited to specialized stimulus conditions.

View Article and Find Full Text PDF

Neurons in the primate extrastriate cortex are highly selective for complex stimulus features such as faces, objects, and motion patterns. One explanation for this selectivity is that neurons in these areas carry out sophisticated computations on the outputs of lower-level areas such as primary visual cortex (V1), where neuronal selectivity is often modeled in terms of linear spatiotemporal filters. However, it has long been known that such simple V1 models are incomplete because they fail to capture important nonlinearities that can substantially alter neuronal selectivity for specific stimulus features.

View Article and Find Full Text PDF

Visual neurons are often characterized in terms of their tuning for various stimulus properties, such as shape, color, and velocity. Generally, these tuning curves are further modulated by the overall intensity of the stimulus, such that increasing the contrast increases the firing rate, up to some maximum. In this paper, we describe the tuning of neurons in the middle temporal area (MT or V5) of macaque visual cortex for moving stimuli of varying contrast.

View Article and Find Full Text PDF