Publications by authors named "Nicholas Hayman"

Methods to assess environmental impacts from episodic discharges on receiving water bodies need a more environmentally relevant and scientifically defensible toxicity test design. Many permittees are regularly required to conduct 96-h toxicity tests on discharges associated with events that are generally less than 24 h in duration. Current standardized methods do not adequately reflect these episodic discharge conditions at either the point of compliance nor as it mixes with the receiving environment.

View Article and Find Full Text PDF

Per- and poly-fluoroalkyl substances (PFAS) are emerging contaminants that are coming under increasing scrutiny. Currently, there is a paucity of effects data for marine aquatic life, limiting the assessment of ecological risks and compliance with water quality policies. In the present study, the toxicity of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) to four standard marine laboratory toxicity testing species, encompassing five endpoints, were evaluated: 1) 96-h embryo-larval normal development for the purple sea urchin (Strongylocentrotus purpuratus); 2) 48-h embryo-larval normal development and normal survival for the Mediterranean mussel (Mytilus galloprovincialis); 3) 96-h survival of opossum shrimp (Americamysis bahia); and 4) 24-h light output for the bioluminescent dinoflagellate Pyrocystis lunula.

View Article and Find Full Text PDF

Evaluating sediment recontamination due to storm water discharges is important when evaluating the long-term effectiveness of sediment remediation efforts at reducing biological impacts. The bioaccumulation of the heavy metals zinc, nickel, copper, cadmium, mercury, and lead and the metalloid arsenic in a clam (Macoma nasuta) was studied in surficial sediments before and after storm water inputs from Paleta Creek, California, USA, during wet seasons in 2015 to 2016 and 2016 to 2017. The bioaccumulation was compared with bulk sediment concentrations and porewater concentrations measured by diffusion gradient in thin film devices.

View Article and Find Full Text PDF

Recontamination of sediments by stormwater is a major concern when evaluating the potential effectiveness of sediment remediation. Stormwater and sediment sampling were conducted in a mixed-use watershed at Paleta Creek in San Diego, CA to evaluate methods for assessing sediment recontamination by metals. Size-segregated stormwater contaminant loads with simultaneous receiving water and sediment measurements were used to identify dominant sources and contaminants with respect to their impact on sediment recontamination.

View Article and Find Full Text PDF

Determination of the median effective concentration (EC50) of Cu on Mytilus galloprovincialis larvae by diffusive gradient in thin films (DGT) has been shown to effectively reduce the need to consider dissolved organic carbon (DOC) concentration and quality. A standard toxicity test protocol was used to validate previously modeled protective effects, afforded to highly sensitive marine larvae by ligand competition, in 5 diverse site waters. The results demonstrate significant narrowing of M.

View Article and Find Full Text PDF

To assess potential impacts on receiving systems, associated with storm water contaminants, laboratory 10-d amphipod (Eohaustorius estuarius) survival toxicity tests were performed using intact sediment cores collected from Paleta Creek (San Diego Bay, CA, USA) on 5 occasions between 2015 and 2017. The approach included deposition-associated sediment particles collected from sediment traps placed at each of 4 locations during the 2015 to 2016 wet seasons. The bioassays demonstrated wet season toxicity, especially closest to the creek mouth, and greater mortality associated with particles deposited in the wet season compared with dry season samples.

View Article and Find Full Text PDF

Diffusive gradient in thin films (DGT) potentially better quantifies bioavailable copper (Cu) in seawater. Laboratory exposure of DGTs and Mytilus galloprovincialis embryos at varying concentrations of dissolved organic carbon and Cu were performed to resolve the degree to which mimicry of toxicity buffering occurs in passive sampler quantification. The results provide preliminary median effect concentrations (EC50s) ranging from 4.

View Article and Find Full Text PDF

Hydrodynamics and pollution affect estuarine populations, but their ecological effects have rarely been studied in combination. We conducted two laboratory experiments to quantify whether predator-prey interactions between California killifish, Fundulus parvipinnis, and the polychaete Polydora cornuta vary with flow speed and chlorpyrifos exposure. In one experiment, only F.

View Article and Find Full Text PDF

The Mid-Cayman spreading centre is an ultraslow-spreading ridge in the Caribbean Sea. Its extreme depth and geographic isolation from other mid-ocean ridges offer insights into the effects of pressure on hydrothermal venting, and the biogeography of vent fauna. Here we report the discovery of two hydrothermal vent fields on the Mid-Cayman spreading centre.

View Article and Find Full Text PDF
Article Synopsis
  • Sampling intact oceanic crust through various geological layers is crucial for understanding mid-ocean ridge formation, yet remains a scientific challenge.
  • Recent drilling at Hole 1256D in the eastern Pacific Ocean successfully accessed gabbro at a depth of 1157 meters, providing insight into crust formed at superfast spreading rates.
  • The discovery of gabbros, which reflect crystallized melt lenses, aligns with seismic predictions that suggest shallower melt lenses occur faster spreading rates and suggests a complex interaction with the surrounding metamorphosed dikes and lavas.
View Article and Find Full Text PDF