hiPSC-derived intestinal organoids are epithelial structures that self-assemble from differentiated cells into complex 3D structures, representative of the human intestinal epithelium, in which they exhibit crypt/villus-like structures. Here, we describe the generation of hiPSC-derived intestinal organoids by the stepwise differentiation of hiPSCs into definitive endoderm, which is then posteriorized to form hindgut epithelium before being transferred into 3D culture conditions. The 3D culture environment consists of extracellular matrix (ECM) (e.
View Article and Find Full Text PDFBackground & Aims: Non-alcoholic fatty liver disease (NAFLD) is a complex trait with an estimated prevalence of 25% globally. We aimed to identify the genetic variant underlying a four-generation family with progressive NAFLD leading to cirrhosis, decompensation, and development of hepatocellular carcinoma in the absence of common risk factors such as obesity and type 2 diabetes.
Methods: Exome sequencing and genome comparisons were used to identify the likely causal variant.
Introducing or correcting disease-causing mutations through genome editing in human pluripotent stem cells (hPSCs) followed by tissue-specific differentiation provide sustainable models of multiorgan diseases, such as cystic fibrosis (CF). However, low editing efficiency resulting in extended cell culture periods and the use of specialised equipment for fluorescence activated cell sorting (FACS) make hPSC genome editing still challenging. We aimed to investigate whether a combination of cell cycle synchronisation, single-stranded oligodeoxyribonucleotides, transient selection, manual clonal isolation, and rapid screening can improve the generation of correctly modified hPSCs.
View Article and Find Full Text PDFThe intestine consists of epithelial cells surrounded by a complex environment as mesenchymal cells and the gut microbiota. With its impressive stem cell regeneration capability, the intestine is able to constantly replenish cells lost through apoptosis or abrasion by food passing through. Over the past decade, researchers have identified signaling pathways involved in stem cell homeostasis such as retinoids pathway.
View Article and Find Full Text PDFBackground And Aims: Organoids provide a powerful system to study epithelia in vitro. Recently, this approach was applied successfully to the biliary tree, a series of ductular tissues responsible for the drainage of bile and pancreatic secretions. More precisely, organoids have been derived from ductal tissue located outside (extrahepatic bile ducts; EHBDs) or inside the liver (intrahepatic bile ducts; IHBDs).
View Article and Find Full Text PDFBackground & Aims: α-Antitrypsin deficiency (A1ATD) is an autosomal recessive disorder caused by mutations in the SERPINA1 gene. Individuals with the Z variant (Gly342Lys) retain polymerised protein in the endoplasmic reticulum (ER) of their hepatocytes, predisposing them to liver disease. The concomitant lack of circulating A1AT also causes lung emphysema.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
July 2018
Gastrointestinal diseases are becoming increasingly prevalent in developed countries. Immortalized cells and animal models have delivered important but limited insight into the mechanisms that initiate and propagate these diseases. Human-specific models of intestinal development and disease are desperately needed that can recapitulate structure and function of the gut Advances in pluripotent stem cells and primary tissue culture techniques have made it possible to culture intestinal epithelial cells in three dimensions that self-assemble to form 'intestinal organoids'.
View Article and Find Full Text PDFFor several decades, 5-methylcytosine (5mC) has been thought to be the only DNA modification with a functional significance in metazoans. The discovery of enzymatic oxidation of 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) as well as detection of N6-methyladenine (6mA) in the DNA of multicellular organisms provided additional degrees of complexity to the epigenetic research. According to a growing body of experimental evidence, these novel DNA modifications may play specific roles in different cellular and developmental processes.
View Article and Find Full Text PDFThe treatment of common bile duct (CBD) disorders, such as biliary atresia or ischemic strictures, is restricted by the lack of biliary tissue from healthy donors suitable for surgical reconstruction. Here we report a new method for the isolation and propagation of human cholangiocytes from the extrahepatic biliary tree in the form of extrahepatic cholangiocyte organoids (ECOs) for regenerative medicine applications. The resulting ECOs closely resemble primary cholangiocytes in terms of their transcriptomic profile and functional properties.
View Article and Find Full Text PDFThe difficulty in isolating and propagating functional primary cholangiocytes is a major limitation in the study of biliary disorders and the testing of novel therapeutic agents. To overcome this problem, we have developed a platform for the differentiation of human pluripotent stem cells (hPSCs) into functional cholangiocyte-like cells (CLCs). We have previously reported that our 26-d protocol closely recapitulates key stages of biliary development, starting with the differentiation of hPSCs into endoderm and subsequently into foregut progenitor (FP) cells, followed by the generation of hepatoblasts (HBs), cholangiocyte progenitors (CPs) expressing early biliary markers and mature CLCs displaying cholangiocyte functionality.
View Article and Find Full Text PDFPatterns of DNA methylation (5-methylcytosine, 5mC) are rearranged during differentiation contributing to the regulation of cell type-specific gene expression. TET proteins oxidize 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). Both 5fC and 5caC can be recognized and excised from DNA by thymine-DNA glycosylase (TDG) followed by the subsequent incorporation of unmodified cytosine into the abasic site via the base excision repair (BER) pathway.
View Article and Find Full Text PDFInducible loss of gene function experiments are necessary to uncover mechanisms underlying development, physiology and disease. However, current methods are complex, lack robustness and do not work in multiple cell types. Here we address these limitations by developing single-step optimized inducible gene knockdown or knockout (sOPTiKD or sOPTiKO) platforms.
View Article and Find Full Text PDFIntestinal human organoids (iHOs) provide an effective system for studying the intestinal epithelium and its interaction with various stimuli. By using combinations of different signaling factors, human induced pluripotent stem cells (hIPSCs) can be driven to differentiate down the intestinal lineage. Here, we describe the process for this differentiation, including the derivation of hindgut from hIPSCs, embedding hindgut into a pro-intestinal culture system and passaging the resulting iHOs.
View Article and Find Full Text PDFHepatocytes produced from the differentiation of human pluripotent stem cells can be used to study human development and liver disease, to investigate the toxicological response of novel drug candidates, and as an alternative source of primary cells for transplantation therapies. Here, we describe a method to produce hepatocytes by differentiating human pluripotent stem cells into definitive endoderm, patterning definitive endoderm into anterior definitive endoderm, specifying anterior definitive endoderm into hepatic endoderm, and differentiating hepatic endoderm into immature hepatocytes. These cells are further matured in either two-dimensional or three-dimensional culture conditions to produce cells capable of metabolizing xenobiotics and generating liver-specific proteins, such as albumin and alpha 1 antitrypsin.
View Article and Find Full Text PDFThe study of biliary disease has been constrained by a lack of primary human cholangiocytes. Here we present an efficient, serum-free protocol for directed differentiation of human induced pluripotent stem cells into cholangiocyte-like cells (CLCs). CLCs show functional characteristics of cholangiocytes, including bile acids transfer, alkaline phosphatase activity, γ-glutamyl-transpeptidase activity and physiological responses to secretin, somatostatin and vascular endothelial growth factor.
View Article and Find Full Text PDFThe intestinal mucosa forms the first line of defense against infections mediated by enteric pathogens such as salmonellae. Here we exploited intestinal "organoids" (iHOs) generated from human induced pluripotent stem cells (hIPSCs) to explore the interaction of Salmonella enterica serovar Typhimurium with iHOs. Imaging and RNA sequencing were used to analyze these interactions, and clear changes in transcriptional signatures were detected, including altered patterns of cytokine expression after the exposure of iHOs to bacteria.
View Article and Find Full Text PDFCollectively, lung diseases are one of the largest causes of premature death worldwide and represent a major focus in the field of regenerative medicine. Despite significant progress, only few stem cell platforms are currently available for cell-based therapy, disease modeling, and drug screening in the context of pulmonary disorders. Human foregut stem cells (hFSCs) represent an advantageous progenitor cell type that can be used to amplify large quantities of cells for regenerative medicine applications and can be derived from any human pluripotent stem cell line.
View Article and Find Full Text PDFBiochim Biophys Acta
January 2015
Human pluripotent stem cells (hPSCs) have the capacity to differentiate into any of the hundreds of distinct cell types that comprise the human body. This unique characteristic has resulted in considerable interest in the field of regenerative medicine, given the potential for these cells to be used to protect, repair, or replace diseased, injured, and aged cells within the human body. In addition to their potential in therapeutics, hPSCs can be used to study the earliest stages of human development and to provide a platform for both drug screening and disease modeling using human cells.
View Article and Find Full Text PDFInduced pluripotent stem cell derived hepatocytes (IPSC-Heps) have the potential to reduce the demand for a dwindling number of primary cells used in applications ranging from therapeutic cell infusions to in vitro toxicology studies. However, current differentiation protocols and culture methods produce cells with reduced functionality and fetal-like properties compared to adult hepatocytes. We report a culture method for the maturation of IPSC-Heps using 3-Dimensional (3D) collagen matrices compatible with high throughput screening.
View Article and Find Full Text PDFHuman pluripotent stem cells (hPSCs) could provide an infinite source of clinically relevant cells with potential applications in regenerative medicine. However, hPSC lines vary in their capacity to generate specialized cells, and the development of universal protocols for the production of tissue-specific cells remains a major challenge. Here, we have addressed this limitation for the endodermal lineage by developing a defined culture system to expand and differentiate human foregut stem cells (hFSCs) derived from hPSCs.
View Article and Find Full Text PDFRegeneration and homeostasis in the adult intestinal epithelium is driven by proliferative resident stem cells, whose functional properties during organismal development are largely unknown. Here, we show that human and mouse fetal intestine contains proliferative, immature progenitors, which can be expanded in vitro as Fetal Enterospheres (FEnS). A highly similar progenitor population can be established during intestinal differentiation of human induced pluripotent stem cells.
View Article and Find Full Text PDFLarge-scale production of hepatocytes from a variety of genetic backgrounds would be beneficial for drug screening and to provide a source of cells to be used as a substitute for liver transplantation. However, fully functional primary hepatocytes remain difficult to expand in vitro, and circumventing this problem by using an alternative source of cells is desirable. Here we describe a 25-d protocol to direct the differentiation of human pluripotent stem cells into a near-homogenous population of hepatocyte-like cells.
View Article and Find Full Text PDFHuman induced pluripotent stem cells (iPSCs) represent a unique opportunity for regenerative medicine because they offer the prospect of generating unlimited quantities of cells for autologous transplantation, with potential application in treatments for a broad range of disorders. However, the use of human iPSCs in the context of genetically inherited human disease will require the correction of disease-causing mutations in a manner that is fully compatible with clinical applications. The methods currently available, such as homologous recombination, lack the necessary efficiency and also leave residual sequences in the targeted genome.
View Article and Find Full Text PDFActivin/Nodal signaling is necessary to maintain pluripotency of human embryonic stem cells (hESCs) and to induce their differentiation toward endoderm. However, the mechanisms by which Activin/Nodal signaling achieves these opposite functions remain unclear. To unravel these mechanisms, we examined the transcriptional network controlled in hESCs by Smad2 and Smad3, which represent the direct effectors of Activin/Nodal signaling.
View Article and Find Full Text PDFUnlabelled: Generation of hepatocytes from human embryonic stem cells (hESCs) could represent an advantageous source of cells for cell therapy approaches as an alternative to orthotopic liver transplantation. However, the generation of differentiated hepatocytes from hESCs remains a major challenge, especially using a method compatible with clinical applications. We report a novel approach to differentiate hESCs into functional hepatic cells using fully defined culture conditions, which recapitulate essential stages of liver development.
View Article and Find Full Text PDF