Forte is an open-source library specialized in multireference electronic structure theories for molecular systems and the rapid prototyping of new methods. This paper gives an overview of the capabilities of Forte, its software architecture, and examples of applications enabled by the methods it implements.
View Article and Find Full Text PDFWe introduce a novel open-source software package QForte, a comprehensive development tool for new quantum simulation algorithms. QForte incorporates functionality for handling molecular Hamiltonians, Fermionic encoding, ansatz construction, time evolution, and state-vector emulation, requiring only a classical electronic structure package as a dependency. QForte also contains black-box implementations of a wide variety of quantum algorithms, including variational and projective quantum eigensolvers, adaptive eigensolvers, quantum imaginary time evolution, and quantum Krylov methods.
View Article and Find Full Text PDFThis work explores the ability of classical electronic structure methods to efficiently represent (compress) the information content of full configuration interaction (FCI) wave functions. We introduce a benchmark set of four hydrogen model systems of different dimensionalities and distinctive electronic structures: a 1D chain, a 1D ring, a 2D triangular lattice, and a 3D close-packed pyramid. To assess the ability of a computational method to produce accurate and compact wave functions, we introduce the accuracy volume, a metric that measures the number of variational parameters necessary to achieve a target energy error.
View Article and Find Full Text PDFJ Chem Theory Comput
April 2020
We introduce a multireference selected quantum Krylov (MRSQK) algorithm suitable for quantum simulation of many-body problems. MRSQK is a low-cost alternative to the quantum phase estimation algorithm that generates a target state as a linear combination of non-orthogonal Krylov basis states. This basis is constructed from a set of reference states via real-time evolution; thus, avoiding the numerical optimization of parameters.
View Article and Find Full Text PDF