Am J Physiol Regul Integr Comp Physiol
January 2016
During lactation, highly specialized secretory mammary epithelial cells (MECs) produce and secrete huge quantities of nutrients and nonnutritive factors into breast milk. The zinc (Zn) transporter ZnT4 (SLC30A4) transports Zn into the trans-Golgi apparatus for lactose synthesis, and across the apical cell membrane for efflux from MECs into milk. This is consistent with observations in "lethal milk" (lm/lm) mice, which have a truncation mutation in SLC30A4, and present with not only low milk Zn concentration, but also smaller mammary glands, decreased milk volume, and lactation failure by lactation day 2.
View Article and Find Full Text PDFZinc (Zn) requirements are increased during lactation. Increased demand is partially met through increased Zn absorption from the diet. It is estimated that 60-80% of women of reproductive age are at risk for Zn deficiency due to low intake of bioavailable Zn and increased demands during pregnancy and lactation.
View Article and Find Full Text PDFZinc plays a critical role in a vast array of cellular functions including gene transcription, protein translation, cell proliferation, differentiation, bioenergetics, and programmed cell death. The mammary gland depends upon tight coordination of these processes during development and reproduction for optimal expansion, differentiation, and involution. For example, zinc is required for activation of matrix metalloproteinases, intracellular signaling cascades such as MAPK and PKC, and the activation of both mitochondrial-mediated apoptosis and lysosomal-mediated cell death.
View Article and Find Full Text PDFZinc (Zn) transporter 4 (ZnT4) plays a key role in mammary gland Zn metabolism. A mutation in ZnT4 (SLC30A4) that targets the protein for degradation is responsible for the "lethal milk" (lm/lm) mouse phenotype. ZnT4 protein is only detected in the secreting mammary gland, and lm/lm mice have ∼35% less Zn in milk, decreased mammary gland size, and decreased milk secretion.
View Article and Find Full Text PDFDietary analysis predicts that marginal Zn deficiency is common in women of reproductive age. The lack of reliable biomarkers limits the capacity to assess Zn status and consequently understand effects of maternal Zn deficiency. We determined effects of marginal maternal Zn deficiency on mammary gland function, milk secretion, and milk composition in mice.
View Article and Find Full Text PDFZinc (Zn) is an essential micronutrient required for over 300 different cellular processes, including DNA and protein synthesis, enzyme activity, and intracellular signaling. Cellular Zn homeostasis necessitates the compartmentalization of Zn into intracellular organelles, which is tightly regulated through the integration of Zn transporting mechanisms. The pancreas, prostate, and mammary gland are secretory tissues that have unusual Zn requirements and thus must tightly regulate Zn metabolism through integrating Zn import, sequestration, and export mechanisms.
View Article and Find Full Text PDFThe mammary epithelial cell transitions from a non-secreting to a terminally differentiated, secreting cell during lactation. Zinc (Zn) is a key modulator of phenotypic transition as it regulates over 300 biological functions including transcription, translation, energy transformation, intracellular signaling, and apoptosis. In addition, Zn must be redirected from normal cellular functions into the secretory compartment, as many components of the secretory system are Zn-dependent and an extraordinary amount of Zn is secreted (1-3 mg Zn/day) into milk.
View Article and Find Full Text PDFMale infertility accounts for ~40% of cases of failure to conceive. Testes have a strict zinc (Zn) requirement and severe Zn deficiency compromises spermatogenesis, sperm viability, and motility, compromising fertility in men. Despite the high prevalence of marginal Zn deficiency in humans, less emphasis has been placed on understanding the consequences on male reproduction.
View Article and Find Full Text PDF