Rapid clearance of thrombolytics from blood following intravenous injection is a major clinical challenge in cardiovascular medicine. To overcome this barrier, nanoparticle (NP) based drug delivery systems have been reported. Although superior than conventional therapy, a large proportion of the injected NP is still cleared by the reticuloendothelial system.
View Article and Find Full Text PDFRed blood cells (RBCs) express a variety of immunomodulatory markers that enable the body to recognize them as self. We have shown that RBC membrane glycophorin A (GPA) receptor can mediate membrane attachment of protein therapeutics. A critical knowledge gap is whether attaching drug-encapsulated nanoparticles (NPs) to GPA and modification with cell-penetrating peptide (CPP) will impact binding, oxygenation, and the induction of cellular stress.
View Article and Find Full Text PDFReducing the promiscuous tropism of native adenovirus by using fiberless adenovirus is advantageous toward its use as a gene therapy vector or vaccine component. The removal of the fiber protein on native adenovirus abrogates several undesirable interactions; however, this approach decreases the particle's physical stability. To create stable fiberless adenovirus for pharmaceutical use, the effects of temperature and pH on the particle's stability profile must be addressed.
View Article and Find Full Text PDFNearly 30years ago, certain small, relatively nontoxic peptides were discovered to be capable of traversing the cell membrane. These cell-penetrating peptides, as they are now called, have been shown to not only be capable of crossing the cell membrane themselves but can also carry many different therapeutic agents into cells, including small molecules, plasmid DNA, siRNA, therapeutic proteins, viruses, imaging agents, and other various nanoparticles. Many cell-penetrating peptides have been derived from natural proteins, but several other cell-penetrating peptides have been developed that are either chimeric or completely synthetic.
View Article and Find Full Text PDF