Co-ordinating metabolism and growth is a key challenge for all organisms. Despite fluctuating environments, cells must produce the same metabolic outputs to thrive. The mechanisms underlying this 'growth homeostasis' are known in bacteria and eukaryotes, but remain unexplored in archaea.
View Article and Find Full Text PDFBackground: Previous work has shown that the hypersaline-adapted archaeon, Halobacterium salinarum NRC-1, is highly resistant to oxidative stress caused by exposure to hydrogen peroxide, UV, and gamma radiation. Dynamic alteration of the gene regulatory network (GRN) has been implicated in such resistance. However, the molecular functions of transcription regulatory proteins involved in this response remain unknown.
View Article and Find Full Text PDF