Hypoxia is common in tumors and is associated with cancer progression and drug resistance, driven, at least in part, by genetic instability. Little is known on how hypoxia affects Translesion DNA Synthesis (TLS), in which error-prone DNA polymerases bypass lesions, thereby maintaining DNA continuity at the price of increased mutations. Here we show that under acute hypoxia, PCNA monoubiquitination, a key step in TLS, and expression of error-prone DNA polymerases increased under regulation of the HIF1α transcription factor.
View Article and Find Full Text PDFThe SARS-CoV-2 helicase, non-structural protein 13 (Nsp13), plays an essential role in viral replication, translocating in the 5' → 3' direction as it unwinds double-stranded RNA/DNA. We investigated the impact of structurally distinct DNA lesions on DNA unwinding catalyzed by Nsp13. The selected lesions include two benzo[]pyrene (B[]P)-derived dG adducts, the UV-induced cyclobutane pyrimidine dimer (CPD), and the pyrimidine (6-4) pyrimidone (6-4PP) photolesion.
View Article and Find Full Text PDFUltraviolet light generates cyclobutane pyrimidine dimer (CPD) and pyrimidine 6-4 pyrimidone (6-4PP) photoproducts that cause skin malignancies if not repaired by nucleotide excision repair (NER). While the faster repair of the more distorting 6-4PPs is attributed mainly to more efficient recognition by XPC, the XPD lesion verification helicase may play a role, as it directly scans the damaged DNA strand. With extensive molecular dynamics simulations of XPD-bound single-strand DNA containing each lesion outside the entry pore of XPD, we elucidate strikingly different verification processes for these two lesions that have very different topologies.
View Article and Find Full Text PDFDNA helicase unwinding activity can be inhibited by small molecules and by covalently bound DNA lesions. Little is known about the relationships between the structural features of DNA lesions and their impact on unwinding rates and processivities. Employing RecQ helicase as a model system, and various conformationally defined DNA lesions, the unwinding rate constants = , and processivities = (k) were determined ( unwinding rate constant; , helicase-DNA dissociation rate constant).
View Article and Find Full Text PDFAs demonstrated by us earlier and by other researchers, a diet containing freeze-dried black raspberries (BRB) inhibits DNA damage and carcinogenesis in animal models. We tested the hypothesis that the inhibition of DNA damage by BRB is due, in part, to the enhancement of DNA repair capacity evaluated in the human HeLa cell extract system, an established in vitro system for the assessment of cellular DNA repair activity. The pre-treatment of intact HeLa cells with BRB extracts (BRBE) enhances the nucleotide excision repair (NER) of a bulky deoxyguanosine adduct derived from the polycyclic aromatic carcinogen benzo[a]pyrene (BP-dG) by ~24%.
View Article and Find Full Text PDFIn nucleotide excision repair (NER), the xeroderma pigmentosum D helicase (XPD) scans DNA searching for bulky lesions, stalls when encountering such damage to verify its presence, and allows repair to proceed. Structural studies have shown XPD bound to its single-stranded DNA substrate, but molecular and dynamic characterization of how XPD translocates on undamaged DNA and how it stalls to verify lesions remains poorly understood. Here, we have performed extensive all-atom MD simulations of human XPD bound to undamaged and damaged ssDNA, containing a mutagenic pyrimidine (6-4) pyrimidone UV photoproduct (6-4PP), near the XPD pore entrance.
View Article and Find Full Text PDFThe first order of DNA packaging is the nucleosome with the DNA wrapped around the histone octamer. This leaves the nucleosomal DNA with access restrictions, which impose a significant barrier to repair of damaged DNA. The efficiency of DNA repair has been related to nucleosome structure and chromatin status, which is modulated in part by post-translational modifications (PTMs) of histones.
View Article and Find Full Text PDFThe oxidatively generated genotoxic spiroiminodihydantoin (Sp) lesions are well-known substrates of the base excision repair (BER) pathway initiated by the bifunctional DNA glycosylase NEIL1. In this work, we reported that the excision kinetics of the single Sp lesions site-specifically embedded in the covalently closed circular DNA plasmids (contour length 2686 base pairs) by NEIL1 are biphasic under single-turnover conditions ([NEIL1] ≫ [SpDNApl]) in contrast with monophasic excision kinetics of the same lesions embedded in147-mer Sp-modified DNA duplexes. Under conditions of a large excess of plasmid DNA base pairs over NEIL1 molecules, the kinetics of excision of Sp lesions are biphasic in nature, exhibiting an initial burst phase, followed by a slower rate of formation of excision products The burst phase is associated with NEIL1-DNA plasmid complexes, while the slow kinetic phase is attributed to the dissociation of non-specific NEIL1-DNA complexes.
View Article and Find Full Text PDFThe base and nucleotide excision repair pathways (BER and NER, respectively) are two major mechanisms that remove DNA lesions formed by the reactions of genotoxic intermediates with cellular DNA. It is generally believed that small non-bulky oxidatively generated DNA base modifications are removed by BER pathways, whereas DNA helix-distorting bulky lesions derived from the attack of chemical carcinogens or UV irradiation are repaired by the NER machinery. However, existing and growing experimental evidence indicates that oxidatively generated DNA lesions can be repaired by competitive BER and NER pathways in human cell extracts and intact human cells.
View Article and Find Full Text PDFThe base and nucleotide excision repair pathways (BER and NER, respectively) are two major mechanisms that remove DNA lesions formed by the reactions of genotoxic intermediates with cellular DNA. We have demonstrated earlier that the oxidatively generated guanine lesions spiroiminodihydantoin (Sp) and 5-guanidinohydantoin (Gh) are excised from double-stranded DNA by competing BER and NER in whole-cell extracts [Shafirovich, V., et al.
View Article and Find Full Text PDFThe Nucleotide Excision Repair (NER) mechanism removes a wide spectrum of structurally different lesions that critically depend on the binding of the DNA damage sensing NER factor XPC-RAD23B (XPC) to the lesions. The bulky mutagenic benzo[a]pyrene diol epoxide metabolite-derived cis- and trans-B[a]P-dG lesions (G*) adopt base-displaced intercalative (cis) or minor groove (trans) conformations in fully paired DNA duplexes with the canonical C opposite G* (G*:C duplexes). While XPC has a high affinity for binding to these DNA lesions in fully complementary double-stranded DNA, we show here that deleting only the C in the complementary strand opposite the lesion G* embedded in 50-mer duplexes, fully abrogates XPC binding.
View Article and Find Full Text PDFThe excision of DNA lesions by human nucleotide excision repair (NER) has been extensively studied in human cell extracts. Employing DNA duplexes with fewer than 200 bp containing a single bulky, benzo[]pyrene-derived guanine lesion (B[]P-dG), the NER yields are typically on the order of ∼5-10%, or less. Remarkably, the NER yield is enhanced by a factor of ∼6 when the B[]P-dG lesion is embedded in a covalently closed circular pUC19NN plasmid (contour length of 2686 bp) rather than in the same plasmid linearized by a restriction enzyme with the B[]P-dG adduct positioned at the 945th nucleotide counted from the 5'-end of the linearized DNA molecules.
View Article and Find Full Text PDFThe interplay between nucleotide excision repair (NER) and base excision repair (BER) of nonbulky, oxidatively generated DNA lesions has long been a subject of significant interest. The hydantoin oxidation products of 8-oxoguanine, spiroiminodihydantoin (Sp) and 5-guanidinohydantoin (Gh), are substrates of both BER and NER in HeLa cell extracts and human cells [Shafirovich, V., et al.
View Article and Find Full Text PDFThe packaging of DNA in nucleosomes presents a barrier for biological transactions including replication, transcription and repair. However, despite years of research, how the DNA is freed from the histone proteins and thereby allows the molecular machines to access the DNA remains poorly understood. We are interested in global genomic nucleotide excision repair (GG-NER).
View Article and Find Full Text PDF5-Formylcytosine (5fC) is an endogenous epigenetic DNA mark introduced via enzymatic oxidation of 5-methyl-dC in DNA. We and others recently reported that 5fC can form reversible DNA-protein conjugates with histone proteins, likely contributing to regulation of nucleosomal organization and gene expression. The protein component of DNA-protein cross-links can be proteolytically degraded, resulting in smaller DNA-peptide cross-links.
View Article and Find Full Text PDFPurine 5',8-cyclo-2'-deoxynucleosides (cPu) are tandem-type lesions observed among the DNA purine modifications and identified in mammalian cellular DNA in vivo. These lesions can be present in two diasteroisomeric forms, 5' and 5', for each 2'-deoxyadenosine and 2'-deoxyguanosine moiety. They are generated exclusively by hydroxyl radical attack to 2'-deoxyribose units generating C5' radicals, followed by cyclization with the C8 position of the purine base.
View Article and Find Full Text PDFThe interchange between different repair mechanisms in human cells has long been a subject of interest. Here, we provide a direct demonstration that the oxidatively generated guanine lesions spiroiminodihydantoin (Sp) and 5-guanidinohydantoin (Gh) embedded in double-stranded DNA are substrates of both base excision repair (BER) and nucleotide excision repair (NER) mechanisms in intact human cells. Site-specifically modified, P-internally labeled double-stranded DNA substrates were transfected into fibroblasts or HeLa cells, and the BER and/or NER mono- and dual incision products were quantitatively recovered after 2-8 h incubation periods and lysis of the cells.
View Article and Find Full Text PDFThe nonbulky 5',8-cyclopurine DNA lesions (cP) and the bulky, benzo[ a]pyrene diol epoxide-derived stereoisomeric cis- and trans- N-guanine adducts (BPDE-dG) are good substrates of the human nucleotide excision repair (NER) mechanism. These DNA lesions were embedded at the In or Out rotational settings near the dyad axis in nucleosome core particles reconstituted either with native histones extracted from HeLa cells (HeLa-NCP) or with recombinant histones (Rec-NCP). The cP lesions are completely resistant to NER in human HeLa cell extracts.
View Article and Find Full Text PDFNucleotide excision repair (NER) excises a variety of environmentally derived DNA lesions. However, NER efficiencies for structurally different DNA lesions can vary by orders of magnitude; yet the origin of this variance is poorly understood. Our goal is to develop computational strategies that predict and identify the most hazardous, repair-resistant lesions from the plethora of such adducts.
View Article and Find Full Text PDFGlobal genome nucleotide excision repair (GG-NER) is the main pathway for the removal of bulky lesions from DNA and is characterized by an extraordinarily wide substrate specificity. Remarkably, the efficiency of lesion removal varies dramatically and certain lesions escape repair altogether and are therefore associated with high levels of mutagenicity. Central to the multistep mechanism of damage recognition in NER is the sensing of lesion-induced thermodynamic and structural alterations of DNA by the XPC-RAD23B protein and the verification of the damage by the transcription/repair factor TFIIH.
View Article and Find Full Text PDFThe mechanistic aspects of one-electron oxidation of G-quadruplexes in the basket (Na ions) and hybrid (K ions) conformations were investigated by transient absorption laser kinetic spectroscopy and HPLC detection of the 8-oxo-7,8-dihydroguanine (8-oxoG) oxidation product. The photo-induced one-electron abstraction from G-quadruplexes was initiated by sulfate radical anions (SO ˙ ) derived from the photolysis of persulfate ions by 308 nm excimer laser pulses. In neutral aqueous solutions (pH 7.
View Article and Find Full Text PDFHow DNA lesions in nucleosomes are recognized for global genome nucleotide excision repair (GG-NER) remains poorly understood, and the roles that histone tails may play remains to be established. Histone H3 and H4 N-terminal tails are of particular interest as their acetylation states are important in regulating nucleosomal functions in transcription, replication and repair. In particular the H3 tail has been the focus of recent attention as a site for the interaction with XPC, the GG-NER lesion recognition factor.
View Article and Find Full Text PDFBackground: Genomic instability promotes evolution and heterogeneity of tumors. Unraveling its mechanistic basis is essential for the design of appropriate therapeutic strategies. In a previous study, we reported an unexpected oncogenic property of p21, showing that its chronic expression in a p53-deficient environment causes genomic instability by deregulation of the replication licensing machinery.
View Article and Find Full Text PDF