Publications by authors named "Nicholas G Schott"

Insufficient vascularization is a main barrier to creating engineered bone grafts for treating large and ischemic defects. Modular tissue engineering approaches have promise in this application because of the ability to combine tissue types and to localize microenvironmental cues to drive desired cell function. In direct bone formation approaches, it is challenging to maintain sustained osteogenic activity, since vasculogenic cues can inhibit tissue mineralization.

View Article and Find Full Text PDF

There is a significant clinical need to develop effective vascularization strategies for tissue engineering and the treatment of ischemic pathologies. In patients afflicted with critical limb ischemia, comorbidities may limit common revascularization strategies. Cell-encapsulating modular microbeads possess a variety of advantageous properties, including the ability to support prevascularization in vitro while retaining the ability to be injected in a minimally invasive manner in vivo.

View Article and Find Full Text PDF

Bioengineered bone designed to heal large defects requires concomitant development of osseous and vascular tissue to ensure engraftment and survival. Adult human mesenchymal stromal cells (MSC) are promising in this application because they have demonstrated both osteogenic and vasculogenic potential. This study employed a modular approach in which cells were encapsulated in biomaterial carriers (microtissues) designed to support tissue-specific function.

View Article and Find Full Text PDF

A key challenge in the treatment of large bone defects is the need to provide an adequate and stable vascular supply as new tissue develops. Bone tissue engineering applies selected biomaterials and cell types to create an environment that promotes tissue formation, maturation, and remodeling. Mesenchymal stromal cells (MSCs) have been widely used in these strategies because of their established effects on bone formation, and their ability to act as stabilizing pericytes that support vascular regeneration by endothelial cells (ECs).

View Article and Find Full Text PDF

Inadequate vascularization of engineered tissue constructs is a main challenge in developing a clinically impactful therapy for large, complex, and recalcitrant bone defects. It is well established that bone and blood vessels form concomitantly during development, as well as during repair after injury. Endothelial cells (ECs) and mesenchymal stromal cells (MSCs) are known to be key players in orthopedic tissue regeneration and vascularization, and these cell types have been used widely in tissue engineering strategies to create vascularized bone.

View Article and Find Full Text PDF

Repair of complex fractures with bone loss requires a potent, space-filling intervention to promote regeneration of bone. We present a biomaterials-based strategy combining mesenchymal stromal cells (MSC) with a chitosan-collagen matrix to form modular microtissues designed for delivery through a needle to conformally fill cavital defects. Implantation of microtissues into a calvarial defect in the mouse showed that osteogenically pre-differentiated MSC resulted in complete bridging of the cavity, while undifferentiated MSC produced mineralized tissue only in apposition to native bone.

View Article and Find Full Text PDF