Publications by authors named "Nicholas G Davies"

England has experienced a heavy burden of COVID-19, with multiple waves of SARS-CoV-2 transmission since early 2020 and high infection levels following the emergence and spread of Omicron variants since late 2021. In response to rising Omicron cases, booster vaccinations were accelerated and offered to all adults in England. Using a model fitted to more than 2 years of epidemiological data, we project potential dynamics of SARS-CoV-2 infections, hospital admissions and deaths in England to December 2022.

View Article and Find Full Text PDF

Background: COVID-19 outbreaks still occur in English care homes despite the interventions in place.

Methods: We developed a stochastic compartmental model to simulate the spread of SARS-CoV-2 within an English care home. We quantified the outbreak risk with baseline non-pharmaceutical interventions (NPIs) already in place, the role of community prevalence in driving outbreaks, and the relative contribution of all importation routes into a fully susceptible care home.

View Article and Find Full Text PDF

In countries with weak surveillance systems, confirmed coronavirus disease 2019 (COVID-19) deaths are likely to underestimate the pandemic's death toll. Many countries also have incomplete vital registration systems, hampering excess mortality estimation. Here, we fitted a dynamic transmission model to satellite imagery data of cemeteries in Mogadishu, Somalia during 2020 to estimate the date of introduction and other epidemiologic parameters of the early spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in this low-income, crisis-affected setting.

View Article and Find Full Text PDF

Background: Obtaining accurate estimates of the risk of COVID-19-related death in the general population is challenging in the context of changing levels of circulating infection.

Methods: We propose a modelling approach to predict 28-day COVID-19-related death which explicitly accounts for COVID-19 infection prevalence using a series of sub-studies from new landmark times incorporating time-updating proxy measures of COVID-19 infection prevalence. This was compared with an approach ignoring infection prevalence.

View Article and Find Full Text PDF

We estimate the potential remaining COVID-19 hospitalisation and death burdens in 19 European countries by estimating the proportion of each country's population that has acquired immunity to severe disease through infection or vaccination. Our results suggest many European countries could still face high burdens of hospitalisations and deaths, particularly those with lower vaccination coverage, less historical transmission and/or older populations. Continued non-pharmaceutical interventions and efforts to achieve high vaccination coverage are required in these countries to limit severe COVID-19 outcomes.

View Article and Find Full Text PDF

We hypothesized that cross-protection from seasonal epidemics of human coronaviruses (HCoVs) could have affected severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission, including generating reduced susceptibility in children. To determine what the prepandemic distribution of immunity to HCoVs was, we fitted a mathematical model to 6 y of seasonal coronavirus surveillance data from England and Wales. We estimated a duration of immunity to seasonal HCoVs of 7.

View Article and Find Full Text PDF

England has experienced a heavy burden of COVID-19, with multiple waves of SARS-CoV-2 transmission since early 2020 and high infection levels following the emergence and spread of Omicron variants since late 2021. In response to rising Omicron cases, booster vaccinations were accelerated and offered to all adults in England. Using a model fitted to more than 2 years of epidemiological data, we project potential dynamics of SARS-CoV-2 infections, hospital admissions and deaths in England to December 2022.

View Article and Find Full Text PDF

Background: Multiple Coronavirus Disease 2019 (COVID-19) vaccines appear to be safe and efficacious, but only high-income countries have the resources to procure sufficient vaccine doses for most of their eligible populations. The World Health Organization has published guidelines for vaccine prioritisation, but most vaccine impact projections have focused on high-income countries, and few incorporate economic considerations. To address this evidence gap, we projected the health and economic impact of different vaccination scenarios in Sindh Province, Pakistan (population: 48 million).

View Article and Find Full Text PDF

Vaccines against bacterial pathogens can protect recipients from becoming infected with potentially antibiotic-resistant pathogens. However, by altering the selective balance between antibiotic-sensitive and antibiotic-resistant bacterial strains, vaccines may also suppress-or spread-antibiotic resistance among unvaccinated individuals. Predicting the outcome of vaccination requires knowing what drives selection for drug-resistant bacterial pathogens and what maintains the circulation of both antibiotic-sensitive and antibiotic-resistant strains of bacteria.

View Article and Find Full Text PDF

Mathematical models have played a key role in understanding the spread of directly-transmissible infectious diseases such as Coronavirus Disease 2019 (COVID-19), as well as the effectiveness of public health responses. As the risk of contracting directly-transmitted infections depends on who interacts with whom, mathematical models often use contact matrices to characterise the spread of infectious pathogens. These contact matrices are usually generated from diary-based contact surveys.

View Article and Find Full Text PDF

During the coronavirus disease 2019 (COVID-19) lockdown, contact clustering in social bubbles may allow extending contacts beyond the household at minimal additional risk and hence has been considered as part of modified lockdown policy or a gradual lockdown exit strategy. We estimated the impact of such strategies on epidemic and mortality risk using the UK as a case study. We used an individual based model for a synthetic population similar to the UK, stratified into transmission risks from the community, within the household and from other households in the same social bubble.

View Article and Find Full Text PDF

Background: In response to the COVID-19 pandemic, the UK first adopted physical distancing measures in March, 2020. Vaccines against SARS-CoV-2 became available in December, 2020. We explored the health and economic value of introducing SARS-CoV-2 immunisation alongside physical distancing in the UK to gain insights about possible future scenarios in a post-vaccination era.

View Article and Find Full Text PDF

Background: A second wave of COVID-19 cases in autumn, 2020, in England led to localised, tiered restrictions (so-called alert levels) and, subsequently, a second national lockdown. We examined the impact of these tiered restrictions, and alternatives for lockdown stringency, timing, and duration, on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission and hospital admissions and deaths from COVID-19.

Methods: We fit an age-structured mathematical model of SARS-CoV-2 transmission to data on hospital admissions and hospital bed occupancy (ISARIC4C/COVID-19 Clinical Information Network, National Health Service [NHS] England), seroprevalence (Office for National Statistics, UK Biobank, REACT-2 study), virology (REACT-1 study), and deaths (Public Health England) across the seven NHS England regions from March 1, to Oct 13, 2020.

View Article and Find Full Text PDF

Background: The health impact of COVID-19 may differ in African settings as compared to countries in Europe or China due to demographic, epidemiological, environmental and socio-economic factors. We evaluated strategies to reduce SARS-CoV-2 burden in African countries, so as to support decisions that balance minimising mortality, protecting health services and safeguarding livelihoods.

Methods: We used a Susceptible-Exposed-Infectious-Recovered mathematical model, stratified by age, to predict the evolution of COVID-19 epidemics in three countries representing a range of age distributions in Africa (from oldest to youngest average age: Mauritius, Nigeria and Niger), under various effectiveness assumptions for combinations of different non-pharmaceutical interventions: self-isolation of symptomatic people, physical distancing and 'shielding' (physical isolation) of the high-risk population.

View Article and Find Full Text PDF

Importance: The degree to which children and adolescents are infected by and transmit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is unclear. The role of children and adolescents in transmission of SARS-CoV-2 is dependent on susceptibility, symptoms, viral load, social contact patterns, and behavior.

Objective: To systematically review the susceptibility to and transmission of SARS-CoV-2 among children and adolescents compared with adults.

View Article and Find Full Text PDF

The COVID-19 pandemic has shown a markedly low proportion of cases among children. Age disparities in observed cases could be explained by children having lower susceptibility to infection, lower propensity to show clinical symptoms or both. We evaluate these possibilities by fitting an age-structured mathematical model to epidemic data from China, Italy, Japan, Singapore, Canada and South Korea.

View Article and Find Full Text PDF

Background: Non-pharmaceutical interventions have been implemented to reduce transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the UK. Projecting the size of an unmitigated epidemic and the potential effect of different control measures has been crucial to support evidence-based policy making during the early stages of the epidemic. This study assesses the potential impact of different control measures for mitigating the burden of COVID-19 in the UK.

View Article and Find Full Text PDF

Background: Antibiotics remain the cornerstone of modern medicine. Yet there exists an inherent dilemma in their use: we are able to prevent harm by administering antibiotic treatment as necessary to both humans and animals, but we must be mindful of limiting the spread of resistance and safeguarding the efficacy of antibiotics for current and future generations. Policies that strike the right balance must be informed by a transparent rationale that relies on a robust evidence base.

View Article and Find Full Text PDF

Vaccines against viral infections have been proposed to reduce prescribing of antibiotics and thereby help control resistant bacterial infections. However, by combining published data sources, we predict that pediatric live attenuated influenza vaccination in England and Wales will not substantially reduce antibiotic consumption or adverse health outcomes associated with antibiotic resistance.

View Article and Find Full Text PDF