Ultra-high voltage capillary electrophoresis with high electric field strength has been applied to the separation of the charge variants, drug conjugates, and disulfide isomers of monoclonal antibodies. Samples composed of many closely related species are difficult to resolve and quantify using traditional analytical instrumentation. High performance instrumentation can often save considerable time and effort otherwise spent on extensive method development.
View Article and Find Full Text PDFHere, we demonstrate an integrated microfluidic capillary electrophoresis-electrospray ionization (CE-ESI) device for the separation of intact monoclonal antibody charge variants with online mass spectrometric (MS) identification. The need for dynamic coating and zwitterionic background electrolyte (BGE) additives has been eliminated by utilizing surface chemistry within the device channels to control analyte adsorption and electroosmotic flow (EOF) while maintaining separation efficiency. The effectiveness of this strategy was illustrated with the separation of charge variants of Infliximab.
View Article and Find Full Text PDFWe describe a chemical vapor deposition (CVD) method for the surface modification of glass microfluidic devices designed to perform electrophoretic separations of cationic species. The microfluidic channel surfaces were modified using aminopropyl silane reagents. Coating homogeneity was inferred by precise measurement of the separation efficiency and electroosmotic mobility for multiple microfluidic devices.
View Article and Find Full Text PDFThis paper describes the fabrication and characterization of thin-layer mercury/gold amalgam microelectrodes and their integration with microchip-based flow injection analysis. This microchip platform allows on-chip injection and lysis of erythrocytes followed by selective detection of intracellular glutathione (GSH) at low potentials. The thin-layer gold microelectrodes were amalgamated by electrodeposition of mercury.
View Article and Find Full Text PDF