Publications by authors named "Nicholas Foti"

Measures of functional connectivity (FC) can elucidate which cortical regions work together in order to complete a variety of behavioral tasks. This study's primary objective was to expand a previously published model of measuring FC to include multiple subjects and several regions of interest. While FC has been more extensively investigated in vision and other sensorimotor tasks, it is not as well understood in audition.

View Article and Find Full Text PDF

Accurate measurement of daily infection incidence is crucial to epidemic response. However, delays in symptom onset, testing, and reporting obscure the dynamics of transmission, necessitating methods to remove the effects of stochastic delays from observed data. Existing estimators can be sensitive to model misspecification and censored observations; many analysts have instead used methods that exhibit strong bias.

View Article and Find Full Text PDF

Restricting in-person interactions is an important technique for limiting the spread of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Although early research found strong associations between cell phone mobility and infection spread during the initial outbreaks in the United States, it is unclear whether this relationship persists across locations and time. We propose an interpretable statistical model to identify spatiotemporal variation in the association between mobility and infection rates.

View Article and Find Full Text PDF
Neural Granger Causality.

IEEE Trans Pattern Anal Mach Intell

August 2022

While most classical approaches to Granger causality detection assume linear dynamics, many interactions in real-world applications, like neuroscience and genomics, are inherently nonlinear. In these cases, using linear models may lead to inconsistent estimation of Granger causal interactions. We propose a class of nonlinear methods by applying structured multilayer perceptrons (MLPs) or recurrent neural networks (RNNs) combined with sparsity-inducing penalties on the weights.

View Article and Find Full Text PDF

We present recent literature on model-based approaches to estimating functional connectivity from neuroimaging data. In contrast to the typical focus on a particular scientific question, we reframe a wider literature in terms of the underlying statistical model used. We distinguish between directed versus undirected and static versus time-varying connectivity.

View Article and Find Full Text PDF

Dependent nonparametric processes extend distributions over measures, such as the Dirichlet process and the beta process, to give distributions over collections of measures, typically indexed by values in some covariate space. Such models are appropriate priors when exchangeability assumptions do not hold, and instead we want our model to vary fluidly with some set of covariates. Since the concept of dependent nonparametric processes was formalized by MacEachern, there have been a number of models proposed and used in the statistics and machine learning literatures.

View Article and Find Full Text PDF

Literature is a form of expression whose temporal structure, both in content and style, provides a historical record of the evolution of culture. In this work we take on a quantitative analysis of literary style and conduct the first large-scale temporal stylometric study of literature by using the vast holdings in the Project Gutenberg Digital Library corpus. We find temporal stylistic localization among authors through the analysis of the similarity structure in feature vectors derived from content-free word usage, nonhomogeneous decay rates of stylistic influence, and an accelerating rate of decay of influence among modern authors.

View Article and Find Full Text PDF

Many real-world networks tend to be very dense. Particular examples of interest arise in the construction of networks that represent pairwise similarities between objects. In these cases, the networks under consideration are weighted, generally with positive weights between any two nodes.

View Article and Find Full Text PDF