Publications by authors named "Nicholas F Noriea"

Strains of , the tick-borne agent of Rocky Mountain spotted fever, vary considerably in virulence. Genomic comparisons of strains have identified a relatively small number of genes divergent in an avirulent strain. Among these is one annotated as ankyrin repeat protein 2 (RARP-2).

View Article and Find Full Text PDF

Chlamydia trachomatis is a human pathogen associated with significant morbidity worldwide. As obligate intracellular parasites, chlamydiae must survive within eukaryotic cells for sufficient time to complete their developmental cycle. To promote host cell survival, chlamydiae express poorly understood anti-apoptotic factors.

View Article and Find Full Text PDF

, the causative agent of Rocky Mountain spotted fever, contains two immunodominant proteins, rOmpA and rOmpB, in the outer membrane. Both rOmpA and rOmpB are conserved throughout spotted fever group rickettsiae as members of a family of autotransporter proteins. Previously, it was demonstrated that rOmpB is proteolytically processed, with the cleavage site residing near the autotransporter domain at the carboxy-terminal end of the protein, cleaving the 168-kDa precursor into apparent 120-kDa and 32-kDa fragments.

View Article and Find Full Text PDF

Unlabelled: Chlamydia trachomatis is an obligate intracellular pathogen that is the etiological agent of a variety of human diseases, including blinding trachoma and sexually transmitted infections. Chlamydiae replicate within a membrane-bound compartment, termed an inclusion, which they extensively modify by the insertion of type III secreted proteins called Inc proteins. IncA is an inclusion membrane protein that encodes two coiled-coil domains that are homologous to eukaryotic SNARE (soluble N-ethylmaleimide-sensitive factor attachment receptor) motifs.

View Article and Find Full Text PDF

Unlabelled: Strains of Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever (RMSF), differ dramatically in virulence despite >99% genetic homology. Spotted fever group (SFG) rickettsiae produce two immunodominant outer membrane proteins, rickettsial OmpA (rOmpA) and rOmpB, which are conserved throughout the SFG and thought to be fundamental to pathogenesis. rOmpA is present in all virulent strains of R.

View Article and Find Full Text PDF

Rickettsia rickettsii is an obligate intracellular pathogen that is the causative agent of Rocky Mountain spotted fever. Strains of R. rickettsii differ dramatically in virulence.

View Article and Find Full Text PDF

Vibrio parahaemolyticus and Vibrio vulnificus, which are native to estuaries globally, are agents of seafood-borne or wound infections, both potentially fatal. Like all vibrios autochthonous to coastal regions, their abundance varies with changes in environmental parameters. Sea surface temperature (SST), sea surface height (SSH), and chlorophyll have been shown to be predictors of zooplankton and thus factors linked to vibrio populations.

View Article and Find Full Text PDF

Vibrio parahaemolyticus is a gram-negative, halophilic bacterium indigenous to marine and estuarine environments and it is capable of causing food and water-borne illness in humans. It can also cause disease in marine animals, including cultured species. Currently, culture-based techniques are used for quantification of V.

View Article and Find Full Text PDF

To date, the genomes of eight Vibrio strains representing six species and three human pathogens have been fully sequenced and reported. This review compares genomic information revealed from these sequencing efforts and what we can infer about Vibrio biology and ecology from this and related genomic information. The focus of the review is on those attributes that allow the Vibrios to survive and even proliferate in their ocean habitats, which include seawater, plankton, invertebrates, fish, marine mammals, plants, man-made structures (surfaces), and particulate matter.

View Article and Find Full Text PDF