The world has moved into a new stage of managing the SARS-CoV-2 pandemic with minimal restrictions and reduced testing in the population, leading to reduced genomic surveillance of virus variants in individuals. Wastewater-based epidemiology (WBE) can provide an alternative means of tracking virus variants in the population but decision-makers require confidence that it can be applied to a national scale and is comparable to individual testing data. We analysed 19,911 samples from 524 wastewater sites across England at least twice a week between November 2021 and February 2022, capturing sewage from >70% of the English population.
View Article and Find Full Text PDFMost public health initiatives that monitor viruses in wastewater have utilized quantitative polymerase chain reaction (PCR) and whole genome PCR sequencing, mirroring techniques used for viral epidemiology in individuals. These techniques require prior knowledge of the target viral genome and are limited to monitoring individual or small groups of viruses. Metagenomic sequencing may offer an alternative strategy for monitoring a broad spectrum of viruses in wastewater, including novel and emerging pathogens.
View Article and Find Full Text PDFFaecal shedding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its subsequent detection in wastewater turned the spotlight onto wastewater-based epidemiology (WBE) for monitoring the coronavirus-disease 2019 (COVID-19) pandemic. WBE for SARS-CoV-2 has been deployed in 70 countries, providing insights into disease prevalence, forecasting and the spatiotemporal tracking and emergence of SARS-CoV-2 variants. Wastewater, however, is a complex sample matrix containing numerous reverse transcription quantitative PCR (RT-qPCR) inhibitors whose concentration and diversity are influenced by factors including population size, surrounding industry and agriculture and climate.
View Article and Find Full Text PDFAccurate surveillance of the COVID-19 pandemic can be weakened by under-reporting of cases, particularly due to asymptomatic or pre-symptomatic infections, resulting in bias. Quantification of SARS-CoV-2 RNA in wastewater can be used to infer infection prevalence, but uncertainty in sensitivity and considerable variability has meant that accurate measurement remains elusive. Here, we use data from 45 sewage sites in England, covering 31% of the population, and estimate SARS-CoV-2 prevalence to within 1.
View Article and Find Full Text PDFWastewater-based epidemiology (WBE) has become a complimentary surveillance tool during the SARS-CoV-2 pandemic. Viral concentration methods from wastewater are still being optimised and compared, whilst viral recovery under different wastewater characteristics and storage temperatures remains poorly understood. Using urban wastewater samples, we tested three viral concentration methods; polyethylene glycol precipitation (PEG), ammonium sulphate precipitation (AS), and CP select™ InnovaPrep® (IP) ultrafiltration.
View Article and Find Full Text PDFUnderstanding the molecular basis of zinc (Zn) uptake and transport in staple cereal crops is critical for improving both Zn content and tolerance to low-Zn soils. This study demonstrates the importance of group F bZIP transcription factors and ZIP transporters in responses to Zn deficiency in wheat (Triticum aestivum). Seven group F TabZIP genes and 14 ZIPs with homeologs were identified in hexaploid wheat.
View Article and Find Full Text PDF