Publications by authors named "Nicholas E Simpson"

Objective: Adipose tissue derived stem cells (ADSCs) transplantation has recently gained widespread enthusiasm, particularly in the perspective to use them as potential alternative cell sources for hepatocytes in cell based therapy, mainly because of their capability of hepatogenic differentiation in vitro and in vivo. But some challenges remain to be addressed, including whether ADSCs can be provided effectively to the target organ and whether subsequent proliferation of transplanted cells can be achieved. To date, intrasplenic injection is the conventional method to deliver ADSCs into the liver; however, a number of donor cells retained in the spleen has been reported.

View Article and Find Full Text PDF

Cryopreservation is important for clinical translation of tissue-engineered constructs. With respect to a pancreatic substitute, encapsulated islets or beta cells have been widely studied for the treatment of insulin-dependent diabetes mellitus. Besides cell viability loss, cryopreservation may affect the function of the remaining viable cells in a pancreatic substitute by altering fundamental processes in glucose-stimulated insulin secretion, such as pathways associated with intermediary metabolism, potentially leading to insulin-secretion defects.

View Article and Find Full Text PDF

Cancer cells exhibit altered glucose metabolism characterized by a preference for aerobic glycolysis or the Warburg effect, and the cells resist matrix detachment-induced apoptosis, which is called anoikis, a barrier to metastasis. It remains largely unclear whether tumor metabolism influences anoikis and metastasis. Here we show that when detached from the matrix, untransformed mammary epithelial cells undergo metabolic reprogramming by markedly upregulating pyruvate dehydrogenase (PDH) kinase 4 (PDK4) through estrogen-related receptor gamma (ERRγ), thereby inhibiting PDH and attenuating the flux of glycolytic carbon into mitochondrial oxidation.

View Article and Find Full Text PDF

The metabolism of glycine into glutathione was monitored noninvasively in vivo in intact rat mammary adenocarcinomas (R3230Ac) by MRI and MRS. Metabolism was tracked by following the isotope label from intravenously infused [2-(13)C]-glycine into the glycinyl residue of glutathione. Signals from [2-(13)C]-glycine and γ-glutamylcysteinyl-[2-(13)C]-glycine ((13)C-glutathione) were detected by nonlocalized (13)C spectroscopy, as these resonances are distinct from background signals.

View Article and Find Full Text PDF

The cysteine precursor L-2-oxothiazolidine-4-carboxylate (OTZ, procysteine) can raise cysteine concentration, and thus glutathione levels, in some tissues. OTZ has therefore been proposed as a prodrug for combating oxidative stress. We have synthesized stable isotope labeled OTZ (i.

View Article and Find Full Text PDF

Due to the high solubility of oxygen in perfluorocarbons (PFCs), these compounds have been explored for improved cell and tissue oxygenation. The goal of this study is to investigate the effects of a PFC emulsion on cellular growth and function in a tissue engineered construct. A perfluorotributylamine (PFTBA) emulsion was co-encapsulated at 10 vol% with mouse βTC-tet insulinoma cells in calcium alginate beads and cultured under normoxic and severely hypoxic conditions.

View Article and Find Full Text PDF

Developing a method to noninvasively monitor tissue-engineered constructs is critical for the optimization of construct design and for assessing therapeutic efficacy. For this purpose, NMR is a powerful technique that can be used to obtain both images and spectroscopic data. But the inherent sensitivity of NMR limits the observation of a bioartificial construct with current NMR surface coil technology.

View Article and Find Full Text PDF

Noninvasive monitoring of tissue-engineered constructs is an important component in optimizing construct design and assessing therapeutic efficacy. In recent years, cellular and molecular imaging initiatives have spurred the use of iron oxide-based contrast agents in the field of NMR imaging. Although their use in medical research has been widespread, their application in tissue engineering has been limited.

View Article and Find Full Text PDF

Aims: The aim of this article is to present a novel synthetic route to form CeO(2) nanoparticles that protects against the detrimental influence of oxidative stress in mammalian cells.

Methods: The noncytotoxic surfactant lecithin was used to synthesize CeO(2) nanoparticles and the products were colloidally stabilized in a biocompatible tri-sodium citrate buffer. These nanoparticles were delivered into murine insulinoma betaTC-tet cells, and intracellular free radical concentrations responding to exposure to hydroquinone were measured in a variety of extracellular CeO(2) concentrations.

View Article and Find Full Text PDF

Defining mechanisms and enzymatic paths critical to cellular function (e.g., secretion) of endocrine cells is a key research goal that can lead toward novel avenues of therapeutic intervention for a variety of disorders.

View Article and Find Full Text PDF
Article Synopsis
  • The report highlights the effectiveness of (1)H MR microscopy in non-invasively studying APA microcapsules, revealing details about the poly-l-lysine (PLL) layer and alginate microstructure changes over a month.
  • The thickness of the alginate/PLL layer was consistent at approximately 40.6 micrometers, although contrast varied based on the guluronic content of alginate and interaction times.
  • The study found that high guluronic content alginate beads experienced a decrease in T(2) relaxation time due to structural reorganization during culture, while those with high mannuronic content remained stable, indicating different susceptibilities to culture conditions.
View Article and Find Full Text PDF

The pyruvate dehydrogenase complex (PDC) is integral to metabolism and energetics. Congenital PDC deficiency leads to lactic acidosis, neurological degeneration and early death. An investigational compound for such defects is dichloroacetate (DCA), which activates the PDC (inhibiting reversible phosphorylation of the E1alpha subunit) and decreases its turnover.

View Article and Find Full Text PDF

We describe four acromegalic patients with persisting typical symptoms - excessive sweating, lack of suppleness of hands, joint pains - despite the achievement of normal serum IGF-1 levels after pituitary surgery. In three patients there was a clear improvement in symptoms when lower IGF-1 levels within the normal range were achieved with pegvisomant treatment. In the fourth patient IGF-1 levels have fluctuated within the normal range with persistence of abnormal sweating, particularly at night.

View Article and Find Full Text PDF

In this study we explore the biochemical consequences of alginate encapsulation on betaTC3 cells. (13)C NMR spectroscopy and isotopomer analysis were used to investigate the effects of encapsulation on several enzymatic processes associated with the TCA cycle. Our data show statistically significant differences in various enzymatic fluxes related to the TCA cycle and insulin secretion between monolayer and alginate-encapsulated cultures.

View Article and Find Full Text PDF

Magnetic resonance spectroscopic imaging has been used to follow glutathione metabolism and evaluate glutathione heterogeneity in intact tumor tissue. Stable isotope-labeled glutathione was detected in s.c.

View Article and Find Full Text PDF

The ability to control cell growth is an issue of critical importance for the use of transformed beta-cell lines within a bioartificial pancreas. Such control can be achieved either by entrapping the cells in a biomaterial that can inhibit cell proliferation or by genetically modifying the cells to regulate growth. Integrating tetracycline-off or -on operon systems into murine insulinoma cell lines (betaTC-tet and R7T1, respectively) allows cell growth regulation upon exposure to tetracycline (TC) or its derivative doxycycline (Dox), respectively.

View Article and Find Full Text PDF

Iron oxide nanoparticles have been shown to magnetically label cells in order to visualize them in vivo via MR imaging. This technology has yet to be implemented in insulin secreting cells, thus it is not known whether the presence of these nanoparticles in the cytoplasm of the cells affects insulin secretion. This study investigates the effectiveness and consequence of labeling mouse insulinoma betaTC3 and betaTC-tet cells with monocrystalline iron oxide nanoparticles (MION).

View Article and Find Full Text PDF

Previously we demonstrated that alginate composition has a significant effect on the growth of encapsulated betaTC3 cells and consequently on the overall metabolic and secretory activities of the encapsulated cultures. Based on these results we postulated that the mechanical properties of alginate were not responsible for the observed effects but rather, changes in the strength of the alginate gel network caused by changes in the number of alginate strands held together in the "egg-box" model are responsible for the observed effects. In this study we address this hypothesis with a series of experiments in which the strength of this interaction is manipulated by varying the calcium concentration either at the time of gelation or during culture maintenance.

View Article and Find Full Text PDF

Alginates are a family of unbranched polysaccharides with properties that vary widely depending on their composition. In the presence of multivalent cations (frequently Ca2+), alginates form a gel. Consequently, alginates have been used to encapsulate a variety of biological materials, including cells.

View Article and Find Full Text PDF

Radiolabeled amino acids represent a promising class of tumor imaging agents, and the determination of the optimal characteristics of these tracers remains an area of active investigation. A new (18)F-labeled branched amino acid, 2-amino-4-[(18)F]fluoro-2-methylbutanoic acid (FAMB), has been prepared in 36% decay-corrected yield using no-carrier-added [(18)F]fluoride. In vitro uptake assays with rat 9L gliosarcoma cells suggest that [(18)F]FAMB was transported primarily via the L type amino acid transport system.

View Article and Find Full Text PDF

syn- and anti-1-amino-3-[18F]fluoromethyl-cyclobutane-1-carboxylic acid (FMACBC, 16 and 17), analogues of anti-1-amino-3-[18F]fluorocyclobutyl-1-carboxylic acid (FACBC), were prepared to evaluate the contributions of C-3 substitution and configuration on the uptake of these radiolabeled amino acids in a rodent model of brain tumors. Radiofluorinated targets [18F]16 and [18F]17 were prepared by no-carrier-added radiofluorination from their corresponding methanesulfonyl esters 12 and 13, respectively, with decay-corrected radiochemical yields of 30% for [18F]16 and 20% for [18F]17. In amino acid transport assays performed in vitro using 9L gliosarcoma cells, both [18F]16 and [18F]17 were substrates for L type amino acid transport, while [18F]17 but not [18F]16 was a substrate for A type transport.

View Article and Find Full Text PDF

Novel radiopharmaceuticals, including amino acids, that target neoplasms through their altered metabolic states have shown promising results in preclinical and clinical studies. Two fluorinated analogues of alpha-aminoisobutyric acid, 2-amino-3-fluoro-2-methylpropanoic acid (FAMP) and 3-fluoro-2-methyl-2-(methylamino)propanoic acid (N-MeFAMP), have been radiolabeled with fluorine-18, characterized in amino acid uptake assays, and evaluated in vivo in normal rats and a rodent tumor model. The key steps in the syntheses of both radiotracers involved the preparation of cyclic sulfamidate precursors.

View Article and Find Full Text PDF