The nucleosome remodeling and deacetylase (NuRD) complex is essential for metazoan development but has been refractory to biochemical analysis. We present an integrated analysis of the native mammalian NuRD complex, combining quantitative mass spectrometry, cross-linking, protein biochemistry, and electron microscopy to define the architecture of the complex. NuRD is built from a 2:2:4 (MTA, HDAC, and RBBP) deacetylase module and a 1:1:1 (MBD, GATAD2, and Chromodomain-Helicase-DNA-binding [CHD]) remodeling module, and the complex displays considerable structural dynamics.
View Article and Find Full Text PDFProtein-protein interactions involve hotspots as small as 4 sequential amino acids. Corresponding tetrapeptides have no structure in water. Here we report linking side chains of amino acids X and Z to form 24 cyclic tetrapeptides, cyclo-[XAAZ]-NH, and stabilise 14-18 membered rings that mimic different kinds of non-regular secondary structures found in protein hotspots.
View Article and Find Full Text PDFUnlabelled: The nucleosome remodelling and deacetylase (NuRD) complex is essential for the development of complex animals. NuRD has roles in regulating gene expression and repairing damaged DNA. The complex comprises at least six proteins with two or more paralogues of each protein routinely identified when the complex is purified from cell extracts.
View Article and Find Full Text PDFPeptides and proteins are not orally bioavailable in mammals, although a few peptides are intestinally absorbed in small amounts. Polypeptides are generally too large and polar to passively diffuse through lipid membranes, while most known active transport mechanisms facilitate cell uptake of only very small peptides. Systematic evaluations of peptides with molecular weights above 500 Da are needed to identify parameters that influence oral bioavailability.
View Article and Find Full Text PDFCorrection for 'Downsizing the BAD BH3 peptide to small constrained α-helices with improved ligand efficiency' by Nicholas E. Shepherd et al., Org.
View Article and Find Full Text PDFBcl2 Homology (BH) proteins can either trigger or prevent programmed cell death or apoptosis. Deregulation of the BH protein family network leads to evasion of apoptosis, uncontrolled proliferation and is a hallmark of cancer. Inhibition of pro-survival BH proteins is a promising chemotherapeutic strategy for certain cancers.
View Article and Find Full Text PDFChromatin remodeling enzymes act to dynamically regulate gene accessibility. In many cases, these enzymes function as large multicomponent complexes that in general comprise a central ATP-dependent Snf2 family helicase that is decorated with a variable number of regulatory subunits. The nucleosome remodeling and deacetylase (NuRD) complex, which is essential for normal development in higher organisms, is one such macromolecular machine.
View Article and Find Full Text PDFCyclic pentapeptides (e.g. Ac-(cyclo-1,5)-[KAXAD]-NH2 ; X=Ala, 1; Arg, 2) in water adopt one α-helical turn defined by three hydrogen bonds.
View Article and Find Full Text PDFWe have developed an approach for directly isolating an intact multi-protein chromatin remodeling complex from mammalian cell extracts using synthetic peptide affinity reagent 4. FOG1(1-15), a short peptide sequence known to target subunits of the nucleosome remodeling and deacetylase (NuRD) complex, was joined via a 35-atom hydrophilic linker to the StreptagII peptide. Loading this peptide onto Streptactin beads enabled capture of the intact NuRD complex from MEL cell nuclear extract.
View Article and Find Full Text PDFNociceptin (orphanin FQ) is a 17-residue neuropeptide hormone with roles in both nociception and analgesia. It is an opioid-like peptide that binds to and activates the G-protein-coupled receptor opioid receptor-like-1 (ORL-1, NOP, orphanin FQ receptor, kappa-type 3 opioid receptor) on central and peripheral nervous tissue, without activating classic delta-, kappa-, or mu-opioid receptors or being inhibited by the classic opioid antagonist naloxone. The three-dimensional structure of ORL-1 was recently published, and the activation mechanism is believed to involve capture by ORL-1 of the high-affinity binding, prohelical C-terminus.
View Article and Find Full Text PDFCanonical single-stranded DNA-binding proteins (SSBs) from the oligosaccharide/oligonucleotide-binding (OB) domain family are present in all known organisms and are critical for DNA replication, recombination and repair. The SSB from the hyperthermophilic crenarchaeote Sulfolobus solfataricus (SsoSSB) has a 'simple' domain organization consisting of a single DNA-binding OB fold coupled to a flexible C-terminal tail, in contrast with other SSBs in this family that incorporate up to four OB domains. Despite the large differences in the domain organization within the SSB family, the structure of the OB domain is remarkably similar all cellular life forms.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2014
Many proteins exert their biological activities through small exposed surface regions called epitopes that are folded peptides of well-defined three-dimensional structures. Short synthetic peptide sequences corresponding to these bioactive protein surfaces do not form thermodynamically stable protein-like structures in water. However, short peptides can be induced to fold into protein-like bioactive conformations (strands, helices, turns) by cyclization, in conjunction with the use of other molecular constraints, that helps to fine-tune three-dimensional structure.
View Article and Find Full Text PDFFOG1 is a transcriptional regulator that acts in concert with the hematopoietic master regulator GATA1 to coordinate the differentiation of platelets and erythrocytes. Despite considerable effort, however, the mechanisms through which FOG1 regulates gene expression are only partially understood. Here we report the discovery of a previously unrecognized domain in FOG1: a PR (PRD-BF1 and RIZ) domain that is distantly related in sequence to the SET domains that are found in many histone methyltransferases.
View Article and Find Full Text PDFThe realization that gene transcription is much more pervasive than previously thought and that many diverse RNA species exist in simple as well as complex organisms has triggered efforts to develop functionalized RNA-binding proteins (RBPs) that have the ability to probe and manipulate RNA function. Previously, we showed that the RanBP2-type zinc finger (ZF) domain is a good candidate for an addressable single-stranded-RNA (ssRNA) binding domain that can recognize ssRNA in a modular and specific manner. In the present study, we successfully engineered a sequence specificity change onto this ZF scaffold by using a combinatorial approach based on phage display.
View Article and Find Full Text PDFMyocardial ischemia and cardioprotection by ischemic pre-conditioning induce signal networks aimed at survival or cell death if the ischemic period is prolonged. These pathways are mediated by protein post-translational modifications that are hypothesized to cross-talk with and regulate each other. Phosphopeptides and lysine-acetylated peptides were quantified in isolated rat hearts subjected to ischemia or ischemic pre-conditioning, with and without splitomicin inhibition of lysine deacetylation.
View Article and Find Full Text PDFThe nucleosome remodeling and deacetylase (NuRD) complex is a widely conserved transcriptional co-regulator that harbors both nucleosome remodeling and histone deacetylase activities. It plays a critical role in the early stages of ES cell differentiation and the reprogramming of somatic to induced pluripotent stem cells. Abnormalities in several NuRD proteins are associated with cancer and aging.
View Article and Find Full Text PDFMyelin transcription factor 1 (MyT1/NZF2), a member of the neural zinc-finger (NZF) protein family, is a transcription factor that plays a central role in the developing central nervous system. It has also recently been shown that, in combination with two other transcription factors, the highly similar paralog MyT1L is able to direct the differentiation of murine and human stem cells into functional neurons. MyT1 contains seven zinc fingers (ZFs) that are highly conserved throughout the protein and throughout the NZF family.
View Article and Find Full Text PDFBacterial resistance to antibiotics is now a serious problem, with traditional classes of antibiotics having gradually become ineffective. New drugs are therefore needed to target and inhibit novel pathways that affect the growth of bacteria. An important feature in the survival of bacteria is that they coordinate their efforts together as a colony via secreted auto-inducing molecules.
View Article and Find Full Text PDFThe nociceptin opioid peptide receptor (NOP, NOR, ORL-1) is a GPCR that recognizes nociceptin, a 17-residue peptide hormone. Nociceptin regulates pain transmission, learning, memory, anxiety, locomotion, cardiovascular and respiratory stress, food intake, and immunity. Nociceptin was constrained using an optimized helix-inducing cyclization strategy to produce the most potent NOP agonist (EC50 = 40 pM) and antagonist (IC50 = 7.
View Article and Find Full Text PDFRecombinant proteins are important therapeutics due to potent, highly specific, and nontoxic actions in vivo. However, they are expensive medicines to manufacture, chemically unstable, and difficult to administer with low patient uptake and compliance. Small molecule drugs are cheaper and more bioavailable, but less target-specific in vivo and often have associated side effects.
View Article and Find Full Text PDFDirect catalytic asymmetric vinylogous reactions of an alpha,beta-unsaturated gamma-butyrolactam as a donor are described. A homodinuclear Ni(2)-Schiff base complex promoted a vinylogous Mannich-type reaction of N-Boc imines as well as a vinylogous Michael reaction to nitroalkenes selectively at the gamma-position under simple proton-transfer conditions. Vinylogous Mannich adducts were obtained in 5:1-->30:1 dr and 99% ee, and vinylogous Michael adducts were obtained in 16:1-->30:1 dr and 93-99% ee.
View Article and Find Full Text PDFProteins typically consist of right-handed alpha helices, whereas left-handed alpha helices are rare in nature. Peptides of 20 amino acids or less corresponding to protein helices do not form thermodynamically stable alpha helices in water away from protein environments. The smallest known water-stable right- (alpha(R)) and left- (alpha(L)) handed alpha helices are reported, each stabilized in cyclic pentapeptide units containing all L- or all D-amino acids.
View Article and Find Full Text PDFDevelopment of a new heterobimetallic Ga(O-iPr)(3)/Yb(OTf)(3)/Schiff base 2d complex for catalytic asymmetric alpha-additions of isocyanides to aldehydes is described. Schiff base 2d derived from o-vanillin was suitable to utilize cationic rare earth metal triflates with good Lewis acidity in bimetallic Schiff base catalysis. The Ga(O-iPr)(3)/Yb(OTf)(3)/Schiff base 2d complex promoted asymmetric alpha-additions of alpha-isocyanoacetamides to aryl, heteroaryl, alkenyl, and alkyl aldehydes in good to excellent enantioselectivity (88-98% ee).
View Article and Find Full Text PDFA 13-residue peptide sequence from a respiratory syncitial virus fusion protein was constrained in an alpha-helical conformation by fusing two back-to-back cyclic alpha-turn mimetics. The resulting peptide, Ac-(3-->7; 8-->12)-bicyclo-FP[KDEFD][KSIRD]V-NH(2), was highly alpha-helical in water by CD and NMR spectroscopy, correctly positioning crucial binding residues (F488, I491, V493) on one face of the helix and side chain-side chain linkers on a noninteracting face of the helix. This compound displayed potent activity in both a recombinant fusion assay and an RSV antiviral assay (IC(50) = 36 nM) and demonstrates for the first time that back-to-back modular alpha-helix mimetics can produce functional antagonists of important protein-protein interactions.
View Article and Find Full Text PDF