Publications by authors named "Nicholas E Propson"

While apolipoprotein E (APOE) is the strongest genetic modifier for late-onset Alzheimer's disease (LOAD), the molecular mechanisms underlying isoform-dependent risk and the relevance of ApoE-associated lipids remain elusive. Here, we report that impaired low-density lipoprotein (LDL) receptor (LDLR) binding of lipidated ApoE2 (lipApoE2) avoids LDLR recycling defects observed with lipApoE3/E4 and decreases the uptake of cholesteryl esters (CEs), which are lipids linked to neurodegeneration. In human neurons, the addition of ApoE carrying polyunsaturated fatty acids (PUFAs)-CE revealed an allelic series (ApoE4 > ApoE3 > ApoE2) associated with lipofuscinosis, an age-related lysosomal pathology resulting from lipid peroxidation.

View Article and Find Full Text PDF

Microglia are the major cell type expressing complement C3a receptor (C3aR) in the brain. Using a knockin mouse line in which a Td-tomato reporter is incorporated into the endogenous C3ar1 locus, we identified 2 major subpopulations of microglia with differential C3aR expression. Expressing the Td-tomato reporter on the APPNL-G-F-knockin (APP-KI) background revealed a significant shift of microglia to a high-C3aR-expressing subpopulation and they were enriched around amyloid β (Aβ) plaques.

View Article and Find Full Text PDF

Mutations in leucine-rich repeat kinase 2 () are the most common genetic risk factors for Parkinson's disease (PD). Increased LRRK2 kinase activity is thought to impair lysosomal function and may contribute to the pathogenesis of PD. Thus, inhibition of LRRK2 is a potential disease-modifying therapeutic strategy for PD.

View Article and Find Full Text PDF

The principal signals that drive memory and cognitive impairment in Alzheimer's disease (AD) remain elusive. Here, we revealed brain-wide cellular reactions to type I interferon (IFN-I), an innate immune cytokine aberrantly elicited by amyloid β plaques, and examined their role in cognition and neuropathology relevant to AD in a murine amyloidosis model. Using a fate-mapping reporter system to track cellular responses to IFN-I, we detected robust, Aβ-pathology-dependent IFN-I activation in microglia and other cell types.

View Article and Find Full Text PDF

The autophagy-lysosomal pathway plays a critical role in intracellular clearance and metabolic homeostasis. While neuronal autophagy is known to participate in the degradation of neurofibrillary tangles composed of hyperphosphorylated and misfolded tau protein in Alzheimer's disease and other tauopathies, how microglial-specific autophagy regulates microglial intrinsic properties and neuronal tau pathology is not well understood. We report here that Atg7, a key mediator of autophagosome biogenesis, plays an essential role in the regulation of microglial lipid metabolism and neuroinflammation.

View Article and Find Full Text PDF

Neuroinflammation has been increasingly recognized to play a critical role in Alzheimer's disease (AD). The epoxy fatty acids (EpFAs) are derivatives of the arachidonic acid metabolism pathway and have anti-inflammatory activities. However, their efficacy is limited because of their rapid hydrolysis by the soluble epoxide hydrolase (sEH).

View Article and Find Full Text PDF

Classic innate immune signaling pathways provide most of the immune response in the brain. This response activates many of the canonical signaling mechanisms identified in peripheral immune cells, despite their relative absence in this immune-privileged tissue. Studies over the past decade have strongly linked complement protein production and activation to age-related functional changes and neurodegeneration.

View Article and Find Full Text PDF

Dysfunction of immune and vascular systems has been implicated in aging and Alzheimer disease; however, their interrelatedness remains poorly understood. The complement pathway is a well-established regulator of innate immunity in the brain. Here, we report robust age-dependent increases in vascular inflammation, peripheral lymphocyte infiltration, and blood-brain barrier (BBB) permeability.

View Article and Find Full Text PDF

Type I interferon (IFN) is a key cytokine that curbs viral infection and cell malignancy. Previously, we demonstrated a potent IFN immunogenicity of nucleic acid-containing (NA-containing) amyloid fibrils in the periphery. Here, we investigated whether IFN is associated with β-amyloidosis inside the brain and contributes to neuropathology.

View Article and Find Full Text PDF

Strong evidence implicates the complement pathway as an important contributor to amyloid pathology in Alzheimer's disease (AD); however, the role of complement in tau modulation remains unclear. Here we show that the expression of C3 and C3a receptor (C3aR1) are positively correlated with cognitive decline and Braak staging in human AD brains. Deletion of C3ar1 in PS19 mice results in the rescue of tau pathology and attenuation of neuroinflammation, synaptic deficits, and neurodegeneration.

View Article and Find Full Text PDF

Nonneuronal cell types in the CNS are increasingly implicated as critical players in brain health and disease. While gene expression profiling of bulk brain tissue is routinely used to examine alterations in the brain under various conditions, it does not capture changes that occur within single cell types or allow interrogation of crosstalk among cell types. To this end, we have developed a concurrent brain cell type acquisition (CoBrA) methodology, enabling the isolation and profiling of microglia, astrocytes, endothelia, and oligodendrocytes from a single adult mouse forebrain.

View Article and Find Full Text PDF

The aim of the present study was to test sample reproducibility for model neural tissues formed on synthetic hydrogels. Human embryonic stem (ES) cell-derived precursor cells were cultured on synthetic poly(ethylene glycol) (PEG) hydrogels to promote differentiation and self-organization into model neural tissue constructs. Neural progenitor, vascular, and microglial precursor cells were combined on PEG hydrogels to mimic developmental timing, which produced multicomponent neural constructs with 3D neuronal and glial organization, organized vascular networks, and microglia with ramified morphologies.

View Article and Find Full Text PDF

Growth factors and transcription factors are well known to regulate pluripotent stem cells, but less is known about translational control in stem cells. Here, we use embryonic stem cells (ESCs) to investigate a connection between ESC growth factors and eIF2α-mediated translational control (eIF2α phosphorylation promotes protein expression from mRNAs with upstream open-reading frames, or uORFs). We find abundant phosphorylated P-eIF2α (P-eIF2α) in both pluripotent mouse and human ESCs, but little P-eIF2α in ESCs triggered to differentiate.

View Article and Find Full Text PDF

Human pluripotent stem cell-based in vitro models that reflect human physiology have the potential to reduce the number of drug failures in clinical trials and offer a cost-effective approach for assessing chemical safety. Here, human embryonic stem (ES) cell-derived neural progenitor cells, endothelial cells, mesenchymal stem cells, and microglia/macrophage precursors were combined on chemically defined polyethylene glycol hydrogels and cultured in serum-free medium to model cellular interactions within the developing brain. The precursors self-assembled into 3D neural constructs with diverse neuronal and glial populations, interconnected vascular networks, and ramified microglia.

View Article and Find Full Text PDF

Unlabelled: Aptamers are 'synthetic antibodies' that can bind to target molecules with high affinity and specificity. Aptamers are chemically synthesized and their discovery can be performed completely in vitro, rather than relying on in vivo biological processes, making them well-suited for high-throughput discovery. However, a large fraction of the most enriched aptamers in Systematic Evolution of Ligands by EXponential enrichment (SELEX) rounds display poor binding activity.

View Article and Find Full Text PDF

Genome engineering in human pluripotent stem cells (hPSCs) holds great promise for biomedical research and regenerative medicine. Recently, an RNA-guided, DNA-cleaving interference pathway from bacteria [the type II clustered, regularly interspaced, short palindromic repeats (CRISPR)-CRISPR-associated (Cas) pathway] has been adapted for use in eukaryotic cells, greatly facilitating genome editing. Only two CRISPR-Cas systems (from Streptococcus pyogenes and Streptococcus thermophilus), each with their own distinct targeting requirements and limitations, have been developed for genome editing thus far.

View Article and Find Full Text PDF

Epigenetic mechanisms have been proposed to play crucial roles in mammalian development, but their precise functions are only partially understood. To investigate epigenetic regulation of embryonic development, we differentiated human embryonic stem cells into mesendoderm, neural progenitor cells, trophoblast-like cells, and mesenchymal stem cells and systematically characterized DNA methylation, chromatin modifications, and the transcriptome in each lineage. We found that promoters that are active in early developmental stages tend to be CG rich and mainly engage H3K27me3 upon silencing in nonexpressing lineages.

View Article and Find Full Text PDF

We re-examine the individual components for human embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) culture and formulate a cell culture system in which all protein reagents for liquid media, attachment surfaces and splitting are chemically defined. A major improvement is the lack of a serum albumin component, as variations in either animal- or human-sourced albumin batches have previously plagued human ESC and iPSC culture with inconsistencies. Using this new medium (E8) and vitronectin-coated surfaces, we demonstrate improved derivation efficiencies of vector-free human iPSCs with an episomal approach.

View Article and Find Full Text PDF