Chinese hamster ovary (CHO) cells are the most prevalent host organism for production of recombinant therapeutic proteins, including monoclonal antibodies (mAbs). Regulatory guidance mandates control of the host cell protein (HCP) concentration in the production process, which remains a primary challenge. Although HCP concentrations are typically measured by ELISA, orthogonal proteomic methods are gaining popularity for identification and quantitation of individual HCP species.
View Article and Find Full Text PDFWhile the majority of host cell protein (HCP) impurities are effectively removed in typical downstream purification processes, a small population of HCPs are particularly challenging. Previous studies have identified HCPs that are challenging for a variety of reasons. Lipoprotein lipase (LPL)-a Chinese hamster ovary (CHO) HCP that functions to hydrolyze esters in triglycerides-was one of ten HCPs identified in previous studies as being susceptible to retention in downstream processing.
View Article and Find Full Text PDFDownstream purification of monoclonal antibodies (mAbs) is normally performed using a platform process that is empirically tuned to optimize impurity removal for each new product. A more fundamental understanding of impurities and the product itself would provide insights into the rational design of efficient downstream processes. This work examines the chromatographic properties of Chinese hamster ovary host cell protein (HCP) impurities in non-affinity chromatographic resins commonly used in polishing steps for monoclonal antibody purification: ion-exchange, hydrophobic interaction, and multimodal.
View Article and Find Full Text PDFProtein phase behavior is involved in numerous aspects of downstream processing, either by design as in crystallization or precipitation processes, or as an undesired effect, such as aggregation. This work explores the phase behavior of eight monoclonal antibodies (mAbs) that exhibit liquid-liquid separation, aggregation, gelation, and crystallization. The phase behavior has been studied systematically as a function of a number of factors, including solution composition and pH, in order to explore the degree of variability among different antibodies.
View Article and Find Full Text PDFDownstream processing of monoclonal antibodies (mAbs) has evolved to allow the specific process for a new product to be developed largely by empirical specialization of a platform process that enables removal of impurities of different kinds. A more complete characterization of impurities and the product itself would provide insights into the rational design of efficient downstream processes. This work identifies and characterizes host cell protein (HCP) product-associated impurities, that is, HCP species carried through the downstream processes via direct interactions with the mAb.
View Article and Find Full Text PDF