Violence, verbal abuse, threats, and sexual harassment of healthcare providers by patients is a major challenge for healthcare organizations around the world, contributing to staff turnover, distress, absenteeism, reduced job satisfaction, and worsening mental and physical health. To enable interventions prior to possible violent episodes, we trained two deep learning models to predict violence against healthcare workers 3 days prior to violent events for case and control patients. The first model is a document classification model using clinical notes, and the second is a baseline regression model using largely structured data.
View Article and Find Full Text PDFJ Am Med Inform Assoc
October 2024
Objectives: To demonstrate that 2 popular cohort discovery tools, Leaf and the Shared Health Research Information Network (SHRINE), are readily interoperable. Specifically, we adapted Leaf to interoperate and function as a node in a federated data network that uses SHRINE and dynamically generate queries for heterogeneous data models.
Materials And Methods: SHRINE queries are designed to run on the Informatics for Integrating Biology & the Bedside (i2b2) data model.
J Am Med Inform Assoc
November 2023
Objective: Identifying study-eligible patients within clinical databases is a critical step in clinical research. However, accurate query design typically requires extensive technical and biomedical expertise. We sought to create a system capable of generating data model-agnostic queries while also providing novel logical reasoning capabilities for complex clinical trial eligibility criteria.
View Article and Find Full Text PDFObjective: Social determinants of health (SDOH) impact health outcomes and are documented in the electronic health record (EHR) through structured data and unstructured clinical notes. However, clinical notes often contain more comprehensive SDOH information, detailing aspects such as status, severity, and temporality. This work has two primary objectives: (1) develop a natural language processing information extraction model to capture detailed SDOH information and (2) evaluate the information gain achieved by applying the SDOH extractor to clinical narratives and combining the extracted representations with existing structured data.
View Article and Find Full Text PDFIdentifying cohorts of patients based on eligibility criteria such as medical conditions, procedures, and medication use is critical to recruitment for clinical trials. Such criteria are often most naturally described in free-text, using language familiar to clinicians and researchers. In order to identify potential participants at scale, these criteria must first be translated into queries on clinical databases, which can be labor-intensive and error-prone.
View Article and Find Full Text PDFDeficiencies in data sharing capabilities limit Social Determinants of Health (SDoH) analysis as part of COVID-19 research. The National COVID Cohort Collaborative (N3C) is an example of an Electronic Health Record (EHR) database of patients tested for COVID-19 that could benefit from a SDoH elements framework that captures various screening instruments in EHR data warehouse systems. This paper uses the University of Washington Enterprise Data Warehouse (a data contributor to N3C) to demonstrate how SDoH can be represented and managed to be made available within an OMOP common data model.
View Article and Find Full Text PDFJ Am Med Inform Assoc
November 2021
Objective: Neural network deidentification studies have focused on individual datasets. These studies assume the availability of a sufficient amount of human-annotated data to train models that can generalize to corresponding test data. In real-world situations, however, researchers often have limited or no in-house training data.
View Article and Find Full Text PDFObjective: Academic medical centers and health systems are increasingly challenged with supporting appropriate secondary use of clinical data. Enterprise data warehouses have emerged as central resources for these data, but often require an informatician to extract meaningful information, limiting direct access by end users. To overcome this challenge, we have developed Leaf, a lightweight self-service web application for querying clinical data from heterogeneous data models and sources.
View Article and Find Full Text PDF