Publications by authors named "Nicholas DelRaso"

Previously, we demonstrated that treatment of rats with myo-inositol plus ethanolamine (ME) elevated brain ethanolamine plasmalogens (PE-Pls) and protected against phosphine-induced oxidative stress. Here we tested the hypothesis that ME treatment elevates PE-Pls in a neuro-2A (N2A) cell culture system and protects against hydrogen peroxide (HO)-induced oxidative stress, and we assessed the effects of treatments using myo-inositol with or without (+/-) ethanolamine on ethanolamine phospholipids (PLs) and cell viability following HO exposure. Cells were treated with equimolar amounts (500 μM) of myo-inositol, ethanolamine (Etn), or their combination (ME) for 24 h, followed by an additional 24 h exposure to 650 μM HO.

View Article and Find Full Text PDF

Integrated Omics research capabilities within the Air Force Research Laboratory began in 2003 with the initiation of a Defense Technology Objective project aimed to identify biomarkers of toxicity occurring within the warfighter as a preclinical indicator. Current methods for determining toxic exposures are not responsive enough or created available for deployment to prevent serious health effects. Using Integrated Omics (Genomics/Epigenetics, Proteomics, and Metabonomics) for biomarker discovery, we have identified specific molecular markers which, once validated, could be used for real-time or near-real-time monitoring of the human response to uncharacterized exposures.

View Article and Find Full Text PDF

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) elicits a broad spectrum of species-specific effects that have not yet been fully characterized. This study compares the temporal effects of TCDD on hepatic aqueous and lipid metabolite extracts from immature ovariectomized C57BL/6 mice and Sprague-Dawley rats using gas chromatography-mass spectrometry and nuclear magnetic resonance-based metabolomic approaches and integrates published gene expression data to identify species-specific pathways affected by treatment. TCDD elicited metabolite and gene expression changes associated with lipid metabolism and transport, choline metabolism, bile acid metabolism, glycolysis, and glycerophospholipid metabolism.

View Article and Find Full Text PDF
Article Synopsis
  • The NMR metabolomics community often relies on empirical data and simplified simulations to evaluate algorithms, but current performance metrics are limited and not always reliable.
  • A new technique has been developed to create realistic synthetic validation sets based on NMR spectroscopic data, allowing for more precise assessment of different algorithms.
  • These synthetic data sets, which reflect complex characteristics of real experimental data, can be downloaded for research purposes at a specified website.
View Article and Find Full Text PDF

Renal toxicity can commonly occur after exposure to xenobiotics, pharmaceutical agents or environmental pollutants. Changes in the gene expression in kidney parenchymal cells that precede and/or accompany renal injury may be hallmark critical events in the onset of pathologic changes of renal functions. Over the last several years, transcriptomic analysis has evolved to enable simultaneous analysis of the expression profiles of tens of thousands of genes in response to various endogenous and exogenous stimuli.

View Article and Find Full Text PDF