The cellular events that dictate the initiation of the complement pathway in ocular degeneration, such as age-related macular degeneration (AMD), is poorly understood. Using gene expression analysis (single cell and bulk), mass spectrometry, and immunohistochemistry, we dissected the role of multiple retinal and choroidal cell types in determining the complement homeostasis. Our scRNA-seq data show that the cellular response to early AMD is more robust in the choroid, particularly in fibroblasts, pericytes and endothelial cells.
View Article and Find Full Text PDFAge-related macular degeneration (AMD) is a blinding eye disease with no unifying theme for its etiology. We used single-cell RNA sequencing to analyze the transcriptomes of ~ 93,000 cells from the macula and peripheral retina from two adult human donors and bulk RNA sequencing from fifteen adult human donors with and without AMD. Analysis of our single-cell data identified 267 cell-type-specific genes.
View Article and Find Full Text PDFComplement dysregulation is a feature of many retinal diseases, yet mechanistic understanding at the cellular level is limited. Given this knowledge gap about which retinal cells express complement, we performed single-cell RNA sequencing on ∼92,000 mouse retinal cells and validated our results in five major purified retinal cell types. We found evidence for a distributed cell-type-specific complement expression across 11 cell types.
View Article and Find Full Text PDFCoronary heart disease (the presence of coronary atherosclerotic plaques) is a significant health problem in the industrialized world. A clinical method to accurately visualize and characterize atherosclerotic plaques is needed. Intravascular photoacoustic (IVPA) imaging is being developed to fill this role, but questions remain regarding optimal imaging wavelengths.
View Article and Find Full Text PDFImaging of cellular electric potential via calcium-ion sensitive contrast agents is a useful tool, but current it lacks sufficient depth penetration. We explore contrast-enhanced photoacoustic (PA) imaging, using Arsenazo III dye, to visualize cardiac myocyte depolarization . Phantom results show strong linearity of PA signal with dye concentration ( > 0.
View Article and Find Full Text PDFThe intent of the current study was to investigate the therapeutic contribution of MSCs to vascular regeneration and functional recovery of ischemic tissue. We used a rodent hind limb ischemia model and intramuscularly delivered MSCs within a PEGylated fibrin gel matrix. Within this model, we demonstrated that MSC therapy, when delivered in PEGylated fibrin, results in significantly higher mature blood vessel formation, which allows for greater functional recovery of skeletal muscle tissue as assessed using force production measurements.
View Article and Find Full Text PDFBackground: Radiofrequency (RF) ablation to treat atrial arrhythmia is limited by the inability to reliably assess lesion durability and transmurality.
Objective: The purpose of this study was to determine the feasibility of photoacoustic characterization of myocardial ablation lesions in vitro. In this study, we investigated the feasibility of combined ultrasound (US) and spectroscopic photoacoustic imaging to visualize RF ablation lesions in three dimensions (3D) based on unique differences in the optical absorption spectra between normal and ablated myocardial tissue.
Proc SPIE Int Soc Opt Eng
January 2012
Radiofrequency ablation (RFA) procedures are used to destroy abnormal electrical pathways in the heart that can cause cardiac arrhythmias. Current methods relying on fluoroscopy, echocardiography and electrical conduction mapping are unable to accurately assess ablation lesion size. In an effort to better visualize RFA lesions, photoacoustic (PA) and ultrasonic (US) imaging were utilized to obtain co-registered images of ablated porcine cardiac tissue.
View Article and Find Full Text PDF