Although recombination is known to occur in foot-and-mouth disease virus (FMDV), it is considered only a minor determinant of virus sequence diversity. Analysis at phylogenetic scales shows inter-serotypic recombination events are rare, whereby recombination occurs almost exclusively in non-structural proteins. In this study we have estimated recombination rates within a natural host in an experimental setting.
View Article and Find Full Text PDFAfrican buffaloes () are the principal "carrier" hosts of foot-and-mouth disease virus (FMDV). Currently, the epithelia and lymphoid germinal centers of the oropharynx have been identified as sites for FMDV persistence. We carried out studies in FMDV SAT1 persistently infected buffaloes to characterize the diversity of viruses in oropharyngeal epithelia, germinal centers, probang samples (oropharyngeal scrapings), and tonsil swabs to determine if sufficient virus variation is generated during persistence for immune escape.
View Article and Find Full Text PDFThe control of foot-and-mouth disease virus (FMDV) outbreaks in non-endemic countries relies on the rapid detection and removal of infected animals. In this paper we use the observed relationship between the onset of clinical signs and direct contact transmission of FMDV to identify predictors for the onset of clinical signs and identify possible approaches to preclinical screening in the field. Threshold levels for various virological and immunological variables were determined using Receiver Operating Characteristic (ROC) curve analysis and then tested using generalized linear mixed models to determine their ability to predict the onset of clinical signs.
View Article and Find Full Text PDFWe have performed a series of studies to investigate the role of CD4(+) T-cells in the immune response to foot-and-mouth disease virus (FMDV) post-vaccination. Virus neutralizing antibody titres (VNT) in cattle vaccinated with killed FMD commercial vaccine were significantly reduced and class switching delayed as a consequence of rigorous in vivo CD4(+) T-cell depletion. Further studies were performed to examine whether the magnitude of T-cell proliferative responses correlated with the antibody responses.
View Article and Find Full Text PDFControl of many infectious diseases relies on the detection of clinical cases and the isolation, removal, or treatment of cases and their contacts. The success of such "reactive" strategies is influenced by the fraction of transmission occurring before signs appear. We performed experimental studies of foot-and-mouth disease transmission in cattle and estimated this fraction at less than half the value expected from detecting virus in body fluids, the standard proxy measure of infectiousness.
View Article and Find Full Text PDF