Future far-infrared astrophysics observatories will require focal plane arrays containing thousands of ultrasensitive, superconducting detectors, each of which require efficient optical coupling to the telescope fore-optics. At longer wavelengths, many approaches have been developed, including feedhorn arrays and macroscopic arrays of lenslets. However, with wavelengths as short as 25 µm, optical coupling in the far infrared remains challenging.
View Article and Find Full Text PDFSmoking cessation apps provide efficient, low-cost and accessible support to smokers who are trying to quit smoking. This article focuses on how up-to-date machine learning algorithms, combined with the improvement of mobile phone technology, can enhance our understanding of smoking behaviour and support the development of advanced smoking cessation apps. In particular, we focus on the pros and cons of existing approaches that have been used in the design of smoking cessation apps to date, highlighting the need to improve the performance of these apps by minimizing reliance on self-reporting of environmental conditions (e.
View Article and Find Full Text PDFSensors (Basel)
February 2020
Nicotine consumption is considered a major health problem, where many of those who wish to quit smoking relapse. The problem is that overtime smoking as behaviour is changing into a habit, in which it is connected to internal (e.g.
View Article and Find Full Text PDFEmbryo selection in in vitro fertilization (IVF) treatment has traditionally been done manually using microscopy at intermittent time points during embryo development. Novel technique has made it possible to monitor embryos using time lapse for long periods of time and together with the reduced cost of data storage, this has opened the door to long-term time-lapse monitoring, and large amounts of image material is now routinely gathered. However, the analysis is still to a large extent performed manually, and images are mostly used as qualitative reference.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
July 2013
We address the problem of tracking in vivo muscle fascicle shape and length changes using ultrasound video sequences. Quantifying fascicle behavior is required to improve understanding of the functional significance of a muscle's geometric properties. Ultrasound imaging provides a noninvasive means of capturing information on fascicle behavior during dynamic movements; to date however, computational approaches to assess such images are limited.
View Article and Find Full Text PDFJ Appl Physiol (1985)
January 2012
To understand the functional significance of skeletal muscle anatomy, a method of quantifying local shape changes in different tissue structures during dynamic tasks is required. Taking advantage of the good spatial and temporal resolution of B-mode ultrasound imaging, we describe a method of automatically segmenting images into fascicle and aponeurosis regions and tracking movement of features, independently, in localized portions of each tissue. Ultrasound images (25 Hz) of the medial gastrocnemius muscle were collected from eight participants during ankle joint rotation (2° and 20°), isometric contractions (1, 5, and 50 Nm), and deep knee bends.
View Article and Find Full Text PDF