Currently, esophageal adenocarcinoma (EAC) research is hindered by a dearth of adequate models to study this disease. Traditional cell line and genetically engineered mouse models are lacking in biological and physiological significance, whilst the inefficiency of patient-derived xenografts limit their potential applications. This review describes the landscape of EAC research using patient-derived organoids (PDOs).
View Article and Find Full Text PDFPurpose: Gastric cancers commonly spread to the peritoneum. Its presence significantly alters patient prognosis and treatment-intent; however, current methods of peritoneal staging are inaccurate. Peritoneal tumor DNA (ptDNA) is tumor-derived DNA detectable in peritoneal lavage fluid.
View Article and Find Full Text PDFCaspase-2, one of the most evolutionarily conserved members of the caspase family, is an important regulator of the cellular response to oxidative stress. Given that ferroptosis is suppressed by antioxidant defense pathways, such as that involving selenoenzyme glutathione peroxidase 4 (GPX4), we hypothesized that caspase-2 may play a role in regulating ferroptosis. This study provides the first demonstration of an important and unprecedented function of caspase-2 in protecting cancer cells from undergoing ferroptotic cell death.
View Article and Find Full Text PDFBackground: There is accumulating evidence supporting the clinical use of circulating tumor DNA (ctDNA) in solid tumors, especially in different types of gastrointestinal cancer. As such, appraisal of the current and potential clinical utility of ctDNA is needed to guide clinicians in decision-making to facilitate its general applicability.
Content: In this review, we firstly discuss considerations surrounding specimen collection, processing, storage, and analysis, which affect reporting and interpretation of results.
Purpose: Whilst the treatment paradigm for colorectal cancer has evolved significantly over time, there is still a lack of reliable biomarkers of treatment response. Treatment decisions are based on high-risk features such as advanced TNM stage and histology. The role of the tumour microenvironment, which can influence tumour progression and treatment response, has generated considerable interest.
View Article and Find Full Text PDFPeritoneal metastases from various abdominal cancer types are common and carry poor prognosis. The presence of peritoneal disease upstages cancer diagnosis and alters disease trajectory and treatment pathway in many cancer types. Therefore, accurate and timely detection of peritoneal disease is crucial.
View Article and Find Full Text PDFBackground & Aims: Barrett's esophagus is considered to be a metaplastic lesion that predisposes for esophageal adenocarcinoma. Development of Barrett's esophagus is considered to be driven by sonic hedgehog mediated bone morphogenetic protein (BMP) signaling. We aimed to investigate in preclinical in vivo models whether targeting canonical BMP signaling could be an effective treatment for Barrett's esophagus.
View Article and Find Full Text PDFBackground: In esophageal cancer (EC), there is a paucity of knowledge regarding the interplay between the tumor immune microenvironment and response to neoadjuvant treatment and, therefore, which factors may influence outcomes. Thus, our goal was to investigate the changes in the immune microenvironment with neoadjuvant treatment in EC by assessing the expression of immune related genes and their association with prognosis.
Methods: We examined the transcriptome of paired pre- and post-neoadjuvant treated EC specimens.
The mechanism of action of eprenetapopt (APR-246, PRIMA-1) as an anticancer agent remains unresolved, although the clinical development of eprenetapopt focuses on its reported mechanism of action as a mutant-p53 reactivator. Using unbiased approaches, this study demonstrates that eprenetapopt depletes cellular antioxidant glutathione levels by increasing its turnover, triggering a nonapoptotic, iron-dependent form of cell death known as ferroptosis. Deficiency in genes responsible for supplying cancer cells with the substrates for de novo glutathione synthesis (, , and ), as well as the enzymes required to synthesize glutathione ( and ), augments the activity of eprenetapopt.
View Article and Find Full Text PDFObjective: To explore the clinical utility of circulating tumor DNA (ctDNA) in esophageal adenocarcinoma (EAC) by developing a cost-effective and rapid technique utilising targeted amplicon sequencing.
Summary Of Background Data: Emerging evidence suggests that levels of ctDNA in the blood can be used to monitor treatment response and in the detection of disease recurrence in various cancer types. Current staging modalities for EAC such as computerised tomography of the chest/abdomen/pelvis (CT) and positron emission tomography (PET) do not reliably detect occult micro-metastatic disease, the presence of which signifies a poor prognosis.
Esophageal adenocarcinoma is of increasing global concern due to increasing incidence, a lack of effective treatments, and poor prognosis. Therapeutic target discovery and clinical trials have been hindered by the heterogeneity of the disease, the lack of "druggable" driver mutations, and the dominance of large-scale genomic rearrangements. We have previously undertaken a comprehensive small-molecule phenotypic screen using the high-content Cell Painting assay to quantify the morphological response to a total of 19,555 small molecules across a panel of genetically distinct human esophageal cell lines to identify new therapeutic targets and small molecules for the treatment of esophageal adenocarcinoma.
View Article and Find Full Text PDFColorectal cancers (CRCs) often display histological features indicative of aberrant differentiation but the molecular underpinnings of this trait and whether it directly drives disease progression is unclear. Here, we identify co-ordinate epigenetic inactivation of two epithelial-specific transcription factors, EHF and CDX1, as a mechanism driving differentiation loss in CRCs. Re-expression of EHF and CDX1 in poorly-differentiated CRC cells induced extensive chromatin remodelling, transcriptional re-programming, and differentiation along the enterocytic lineage, leading to reduced growth and metastasis.
View Article and Find Full Text PDFBackground: The risk of esophageal adenocarcinoma (EAC) is associated with gastro-esophageal reflux disease (GERD) and obesity. Lipid metabolism-targeted therapies decrease the risk of progressing from Barrett's esophagus (BE) to EAC, but the precise lipid metabolic changes and their roles in genotoxicity during EAC development are yet to be established.
Methods: Esophageal biopsies from the normal epithelium (NE), BE, and EAC, were analyzed using concurrent lipidomics and proteomics (n = 30) followed by orthogonal validation on independent samples using RNAseq transcriptomics (n = 22) and immunohistochemistry (IHC, n = 80).
The early complement components have emerged as mediators of pro-oncogenic inflammation, classically inferred to cause terminal complement activation, but there are limited data on the activity of terminal complement in cancer. We previously reported elevated serum and tissue C9, the terminal complement component, in esophageal adenocarcinoma (EAC) compared to the precursor condition Barrett's Esophagus (BE) and healthy controls. Here, we investigate the level and cellular fates of the terminal complement complex C5b-9, also known as the membrane attack complex.
View Article and Find Full Text PDFChronic inflammation is a known risk factor for gastrointestinal cancer. The evidence that nonsteroidal anti-inflammatory drugs suppress the incidence, growth, and metastasis of gastrointestinal cancer supports the concept that a nonsteroidal anti-inflammatory drug target, cyclooxygenase, and its downstream bioactive lipid products may provide one of the links between inflammation and cancer. Preclinical studies have demonstrated that the cyclooxygenase-2-prostaglandin E pathway can promote gastrointestinal cancer development.
View Article and Find Full Text PDFAPR-246 (eprenetapopt) is in clinical development with a focus on hematologic malignancies and is promoted as a mutant-p53 reactivation therapy. Currently, the detection of at least one mutation is an inclusion criterion for patient selection into most APR-246 clinical trials. Preliminary results from our phase Ib/II clinical trial investigating APR-246 combined with doublet chemotherapy [cisplatin and 5-fluorouracil (5-FU)] in metastatic esophageal cancer, together with previous preclinical studies, indicate that mutation status alone may not be a sufficient biomarker for APR-246 response.
View Article and Find Full Text PDFA critical hallmark of cancer cells is their ability to evade programmed apoptotic cell death. Consequently, resistance to anti-cancer therapeutics is a hurdle often observed in the clinic. Ferroptosis, a non-apoptotic form of cell death distinguished by toxic lipid peroxidation and iron accumulation, has garnered substantial attention as an alternative therapeutic strategy to selectively destroy tumours.
View Article and Find Full Text PDFBarrett's esophagus in gastrointestinal reflux patients constitutes a columnar epithelium with distal characteristics, prone to progress to esophageal adenocarcinoma. HOX genes are known mediators of position-dependent morphology. Here we show HOX collinearity in the adult gut while Barrett's esophagus shows high HOXA13 expression in stem cells and their progeny.
View Article and Find Full Text PDFgene mutations occur in 70% of oesophageal adenocarcinomas (OACs). Given the central role of p53 in controlling cellular response to therapy we investigated the role of mutant (mut-) p53 and SLC7A11 in a CRISPR-mediated JH-EsoAd1 knockout model. Response to 2 Gy irradiation, cisplatin, 5-FU, 4-hydroxytamoxifen, and endoxifen was assessed, followed by a TaqMan OpenArray qPCR screening for differences in miRNA expression.
View Article and Find Full Text PDF