Tissue Eng Part C Methods
December 2022
The characterization of diffusion through biological tissues has played an important role in fundamental medical research and product development. Understanding the diffusion phenomena allows for the identification of new concepts in fundamental science, evolving medical knowledge and improving future standards and protocols. To illustrate, the structure of cortical bone changes upon the onset of osteoporosis, altering the limited porous compartment through which nutrients and essential signaling molecules travel to bone cells.
View Article and Find Full Text PDFIdentifying a complete, accurate model of brain function would allow neuroscientists and clinicians to make powerful neuropsychological predictions and diagnoses as well as develop more effective treatments to mitigate or reverse neuropathology. The productive model of brain function, which has been dominant in the field for centuries, cannot easily accommodate some higher-order neural processes associated with consciousness and other neuropsychological phenomena. However, in recent years, it has become increasingly evident that the brain is highly receptive to and readily emits electromagnetic (EM) fields and light.
View Article and Find Full Text PDFDiabetic complications and vascular disease are closely intertwined. Diabetes mellitus is a well-established risk factor for both large and small vessel vascular changes, and conversely other vascular risk factors confer increased risk for diabetic complications such as peripheral neuropathy, nephropathy and retinopathy. Furthermore, axons and blood vessels share molecular signals for purposes of navigation, regeneration and terminal arborizations.
View Article and Find Full Text PDF