Publications by authors named "Nicholas C Yoder"

ADAM metallopeptidase domain 9 (ADAM9) is a member of the ADAM family of multifunctional, multidomain type 1 transmembrane proteins. ADAM9 is overexpressed in many cancers, including non-small cell lung, pancreatic, gastric, breast, ovarian, and colorectal cancer, but exhibits limited expression in normal tissues. A target-unbiased discovery platform based on intact tumor and progenitor cell immunizations, followed by an IHC screen, led to the identification of anti-ADAM9 antibodies with selective tumor-versus-normal tissue binding.

View Article and Find Full Text PDF

Antibody-drug conjugates have elicited great interest recently as targeted chemotherapies for cancer. Recent preclinical and clinical data have continued to raise questions about optimizing the design of these complex therapeutics. Biochemical methods for site-specific antibody conjugation have been a design feature of recent clinical ADCs, and preclinical reports suggest that site-specifically conjugated ADCs generically offer improved therapeutic indices (i.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) that incorporate potent indolinobenzodiazepine DNA alkylators as the payload component are currently undergoing clinical evaluation. In one ADC design, the payload molecules are linked to the antibody through a peptidase-labile l-Ala-l-Ala linker. In order to determine the role of amino acid stereochemistry on antitumor activity and tolerability, we incorporated l- and d-alanyl groups in the dipeptide, synthesized all four diastereomers, and prepared and tested the corresponding ADCs.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) incorporating potent indolinobenzodiazepine (IGN) DNA alkylators as the cytotoxic payload are currently undergoing clinical evaluation. The optimized design of these payloads consists of an unsymmetrical dimer possessing both an imine and an amine effectively eliminating DNA crosslinking and demonstrating improved tolerability in mice. Here we present an alternate approach to generating DNA alkylating ADCs by linking the IGN monomer with a biaryl system which has a high DNA binding affinity to potentially enhance tolerability.

View Article and Find Full Text PDF

Antibody-drug conjugates are an emerging class of cancer therapeutics constructed from monoclonal antibodies conjugated with small molecule effectors. First-generation molecules of this class often employed heterogeneous conjugation chemistry, but many site-specifically conjugated ADCs have been described recently. Here, we undertake a systematic comparison of ADCs made with the same antibody and the same macrocyclic maytansinoid effector but conjugated either heterogeneously at lysine residues or site-specifically at cysteine residues.

View Article and Find Full Text PDF

The outlook for patients with refractory/relapsed acute myeloid leukemia (AML) remains poor, with conventional chemotherapeutic treatments often associated with unacceptable toxicities, including severe infections due to profound myelosuppression. Thus there exists an urgent need for more effective agents to treat AML that confer high therapeutic indices and favorable tolerability profiles. Because of its high expression on leukemic blast and stem cells compared with normal hematopoietic stem cells and progenitors, CD123 has emerged as a rational candidate for molecularly targeted therapeutic approaches in this disease.

View Article and Find Full Text PDF

Tumor-selective delivery of cytotoxic agents in the form of antibody-drug conjugates (ADCs) is now a clinically validated approach for cancer treatment. In an attempt to improve the clinical success rate of ADCs, emphasis has been recently placed on the use of DNA-cross-linking pyrrolobenzodiazepine compounds as the payload. Despite promising early clinical results with this class of ADCs, doses achievable have been low due to systemic toxicity.

View Article and Find Full Text PDF

Despite an improving therapeutic landscape, significant challenges remain in treating the majority of patients with advanced ovarian or renal cancer. We identified the cell-cell adhesion molecule cadherin-6 () as a lineage gene having significant differential expression in ovarian and kidney cancers. HKT288 is an optimized CDH6-targeting DM4-based antibody-drug conjugate (ADC) developed for the treatment of these diseases.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) are being actively pursued as a treatment option for cancer following the regulatory approval of brentuximab vedotin (Adcetris) and ado-trastuzumab emtansine (Kadcyla). ADCs consist of a cytotoxic agent conjugated to a targeting antibody through a linker. The two approved ADCs (and most ADCs now in the clinic that use a microtubule disrupting agent as the payload) are heterogeneous conjugates with an average drug-to-antibody ratio (DAR) of 3-4 (potentially ranging from 0 to 8 for individual species).

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) have become a widely investigated modality for cancer therapy, in part due to the clinical findings with ado-trastuzumab emtansine (Kadcyla). Ado-trastuzumab emtansine utilizes the Ab-SMCC-DM1 format, in which the thiol-functionalized maytansinoid cytotoxic agent, DM1, is linked to the antibody (Ab) via the maleimide moiety of the heterobifunctional SMCC linker. The pharmacokinetic (PK) data for ado-trastuzumab emtansine point to a faster clearance for the ADC than for total antibody.

View Article and Find Full Text PDF

Antibody-drug conjugates (ADCs) are of great interest as targeted cancer therapeutics. Preparation of ADCs for early stage screening is constrained by purification and biochemical analysis techniques that necessitate burdensome quantities of antibody. Here we describe a method, developed for the maytansinoid class of ADCs, enabling parallel conjugation of antibodies in 96-well format.

View Article and Find Full Text PDF

Protein ubiquitylation controls many cellular pathways, and timely removal of ubiquitin by deubiquitylating enzymes (DUBs) is essential to govern these different functions. To map endogenous expression of individual DUBs as well as that of any interacting proteins, we developed a catch-and-release ubiquitin probe. Ubiquitin was equipped with an activity-based warhead and a cleavable linker attached to a biotin affinity-handle through tandem site-specific modification, in which we combined intein chemistry with sortase-mediated ligation.

View Article and Find Full Text PDF

Standard genetic approaches allow the production of protein composites by fusion of polypeptides in head-to-tail fashion. Some applications would benefit from constructions that are genetically impossible, such as the site-specific linkage of proteins via their N or C termini, when a remaining free terminus is required for biological activity. We developed a method for the production of N-to-N and C-to-C dimers, with full retention of the biological activity of both fusion partners and without inflicting chemical damage on the proteins to be joined.

View Article and Find Full Text PDF

The number of life-threatening fungal infections has risen in immunocompromised patients, and identification of the rules that govern an appropriate immune response is essential to develop better diagnostics and targeted therapeutics. The outer cell wall component on pathogenic fungi consists of β-1,3-glucan, and Dectin-1, a pattern recognition receptor present on the cell surface of innate immune cells, binds specifically to this carbohydrate. A barrier in understanding the exact immunological response to pathogen-derived carbohydrate epitopes is the presence of multiple types of carbohydrate moieties on fungal cell walls.

View Article and Find Full Text PDF

The unique reactivity of two sortase enzymes, SrtA(staph) from Staphylococcus aureus and SrtA(strep) from Streptococcus pyogenes, is exploited for site-specific labeling of a single polypeptide with different labels at its N and C termini. SrtA(strep) is used to label the protein's C terminus at an LPXTG site with a fluorescently labeled dialanine nucleophile. Selective N-terminal labeling of proteins containing N-terminal glycine residues is achieved using SrtA(staph) and LPXT derivatives.

View Article and Find Full Text PDF

We present a universal mimetic approach of the prehairpin intermediate of gp41, which represents the active drug target for fusion inhibitors of HIV (human immunodeficiency virus) and SIV (simian immunodeficiency virus) based on membrane anchored lipopeptides. For this purpose, we have in situ coupled terminal cysteine-modified peptides originating from the NHR of SIV and HIV to a maleimide-functionalized DOPC bilayer and monitored the interactions with potential antagonists of the trimer-of-hairpin conformation C34 and T20 peptides by means of atomic force microscopy and ellipsometry. FT-IR analysis in conjugation with CD-spectroscopy of hydrated N36-lipopeptides, incorporated in multilamellar bilayer stacks was employed to investigate peptide conformation prior to antagonist binding.

View Article and Find Full Text PDF

Lipid bilayers consisting of lipids with terminally perfluoroalkylated chains have remarkable properties. They exhibit increased stability and phase-separated nanoscale patterns in mixtures with nonfluorinated lipids. In order to understand the bilayer properties that are responsible for this behavior, we have analyzed the structure of solid-supported bilayers composed of 1,2-dipalmitoyl- sn-glycero-3-phosphocholine (DPPC) and of a DPPC analogue with 6 terminal perfluorinated methylene units (F6-DPPC).

View Article and Find Full Text PDF

A growing body of literature suggests that fluorocarbons can direct self-assembly within hydrocarbon environments. We report here the fabrication and characterization of supported lipid bilayers (SLBs) composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and a synthetic, fluorocarbon-functionalized analogue, 1. AFM investigation of these model membranes reveals an intricate, composition-dependent domain structure consisting of approximately 50 nm stripes interspersed between approximately 1 microm sized domains.

View Article and Find Full Text PDF

The E2 protein of papillomavirus is the key regulator of viral transcription and replication. Dimerization, which takes place via its conserved C-terminal DNA-binding domain (DBD), is critical for these functions. The presence and conservation of two histidines (H290 and H320) at or near the dimer interface suggests the importance of their roles in protein structure and stability that was explored by mutating them to neutral alanine.

View Article and Find Full Text PDF

Chemical entities designed to noncovalently interact with predetermined partners have fashioned a new paradigm in chemical biology. Fluorocarbons are extremely promising as supramolecular synthons toward these objectives. Bioorthogonal noncovalent interactions provide a way to modulate self-assembled systems in environments where such control has hitherto not been possible.

View Article and Find Full Text PDF

Highly specific protein-protein interfaces have been the subject of considerable study for their potential utility in disrupting or interrogating cellular signaling and control networks. We report that coiled-coil sequences decorated with phenylalanine core residues fold into stable alpha-helical bundles and that these self-sort from similar peptide assemblies with aliphatic core side chains. For self-assembled ensembles derived from 30-residue monomeric peptides, the DeltaG of specificity is -1.

View Article and Find Full Text PDF

Selective incorporation of unnatural amino acids into proteins is a powerful tool for illuminating the principles of protein design. In particular, fluorinated amino acids have recently emerged as valuable building blocks for designing hyperstable protein folds, as well as directing highly specific protein-protein interactions. We review the collagen mimetic and coiled coil peptide systems that exemplify generalizable paradigms for future design.

View Article and Find Full Text PDF