Publications by authors named "Nicholas Brookes"

Strongly-correlated transition-metal oxides are widely known for their various exotic phenomena. This is exemplified by rare-earth nickelates such as LaNiO, which possess intimate interconnections between their electronic, spin, and lattice degrees of freedom. Their properties can be further enhanced by pairing them in hybrid heterostructures, which can lead to hidden phases and emergent phenomena.

View Article and Find Full Text PDF

Heterostructures from complex oxides allow one to combine various electronic and magnetic orders as to induce new quantum states. A prominent example is the coupling between superconducting and magnetic orders in multilayers from high- cuprates and manganites. A key role is played here by the interfacial CuO layer whose distinct properties remain to be fully understood.

View Article and Find Full Text PDF

We have investigated the 3d orbital excitations in CaCuO_{2} (CCO), Nd_{2}CuO_{4} (NCO), and La_{2}CuO_{4} (LCO) using high-resolution resonant inelastic x-ray scattering. In LCO they behave as well-localized excitations, similarly to several other cuprates. On the contrary, in CCO and NCO the d_{xy} orbital clearly disperses, pointing to a collective character of this excitation (orbiton) in compounds without apical oxygen.

View Article and Find Full Text PDF

van der Waals materials provide a versatile toolbox for the emergence of new quantum phenomena and fabrication of functional heterostructures. Among them, the trihalide VI stands out for its unique magnetic and structural landscape. Here we investigate the spin and orbital magnetic degrees of freedom in the layered ferromagnet VI by means of temperature-dependent X-ray absorption spectroscopy and X-ray magnetic circular and linear dichroism.

View Article and Find Full Text PDF

The universality of the strange metal phase in many quantum materials is often attributed to the presence of a quantum critical point (QCP), a zero-temperature phase transition ruled by quantum fluctuations. In cuprates, where superconductivity hinders direct QCP observation, indirect evidence comes from the identification of fluctuations compatible with the strange metal phase. Here we show that the recently discovered charge density fluctuations (CDF) possess the right properties to be associated to a quantum phase transition.

View Article and Find Full Text PDF

The Extremely Brilliant Source (EBS) is the experimental implementation of the novel Hybrid Multi Bend Achromat (HMBA) storage ring magnetic lattice concept, which has been realised at European Synchrotron Radiation Facility. We present its successful commissioning and first operation. We highlight the strengths of the HMBA design and compare them to the previous designs, on which most operational synchrotron X-ray sources are based.

View Article and Find Full Text PDF
Article Synopsis
  • Two-dimensional van der Waals magnetic semiconductors, like transition-metal iodides CrI and VI, have unique properties that make them promising for new optical, electronic, and magnetic applications.
  • The study combines X-ray electron spectroscopies and theoretical computations to fully characterize the electronic ground states of CrI and VI, highlighting a wide bandgap in CrI and a Mott insulating phase in VI.
  • Findings suggest that the electronic properties are significantly affected by dimensionality, particularly through the discovery of a surface-only V oxidation state in VI, which impacts band engineering and the functionalities of these materials.
View Article and Find Full Text PDF

The normal state of optimally doped cuprates is dominated by the “strange metal” phase that shows a linear temperature () dependence of the resistivity persisting down to the lowest For underdoped cuprates, this behavior is lost below the pseudogap temperature *, where charge density waves (CDWs), together with other intertwined local orders, characterize the ground state. We found that the -linear resistivity of highly strained, ultrathin, underdoped YBaCuO films is restored when the CDW amplitude, detected by resonant inelastic x-ray scattering, is suppressed. This observation suggests an intimate connection between the onset of CDWs and the departure from -linear resistivity in underdoped cuprates.

View Article and Find Full Text PDF

Despite its simple structure and low degree of electronic correlation, SrTiO_{3} (STO) features collective phenomena linked to charge transport and, ultimately, superconductivity, that are not yet fully explained. Thus, a better insight into the nature of the quasiparticles shaping the electronic and conduction properties of STO is needed. We studied the low-energy excitations of bulk STO and of the LaAlO_{3}/SrTiO_{3} two-dimensional electron gas (2DEG) by Ti L_{3} edge resonant inelastic x-ray scattering.

View Article and Find Full Text PDF

We provide a novel experimental method to quantitatively estimate the electron-phonon coupling and its momentum dependence from resonant inelastic x-ray scattering (RIXS) spectra based on the detuning of the incident photon energy away from an absorption resonance. We apply it to the cuprate parent compound NdBa_{2}Cu_{3}O_{6} and find that the electronic coupling to the oxygen half-breathing phonon branch is strongest at the Brillouin zone boundary, where it amounts to ∼0.17  eV, in agreement with previous studies.

View Article and Find Full Text PDF
Article Synopsis
  • Cobalt ferrite nanoparticles are gaining attention for their potential uses in areas like magnetic storage, hyperthermia, and MRI contrast agents.
  • The study utilized Resonant Inelastic Soft X-ray Scattering to analyze the cation distribution in 5 nm cobalt-doped maghemite nanoparticles as cobalt concentration varied.
  • Findings showed that the distribution of divalent cobalt remains stable across different doping levels, suggesting that cobalt doping can adjust the magnetic properties of these nanoparticles while keeping their structural integrity intact.
View Article and Find Full Text PDF

We investigate the magnetic and electronic properties of europium cyclooctatetraene (EuCot) nanowires by means of low-temperature X-ray magnetic circular dichroism (XMCD) and scanning tunneling microscopy (STM) and spectroscopy (STS). The EuCot nanowires are prepared in situ on a graphene surface. STS measurements identify EuCot as an insulator with a minority band gap of 2.

View Article and Find Full Text PDF

We investigate the electronic and magnetic properties of TbPc single ion magnets adsorbed on a graphene/Ni(111) substrate, by density functional theory (DFT), ab initio complete active space self-consistent field calculations, and X-ray magnetic circular dichroism (XMCD) experiments. Despite the presence of the graphene decoupling layer, a sizable antiferromagnetic coupling between Tb and Ni is observed in the XMCD experiments. The molecule-surface interaction is rationalized by the DFT analysis and is found to follow a relay-like communication pathway, where the radical spin on the organic Pc ligands mediates the interaction between Tb ion and Ni substrate spins.

View Article and Find Full Text PDF

A single layer of flat-lying iron phthalocyanine (FePc) molecules assembled on graphene grown on Ir(111) preserves the magnetic moment, as deduced by X-ray magnetic circular dichroism from the Fe L2,3 edges. Furthermore, the FePc molecules in contact with the graphene buffer layer exhibit an enhancement of the magnetic anisotropy, with emergence of an in-plane easy magnetic axis, reflected by an increased orbital moment of the FePc molecules in contact with the C atoms in the graphene sheet. The origin of the increased magnetic anisotropy is discussed, considering the absence of electronic state hybridization, and the breaking of symmetry upon FePc adsorption on graphene.

View Article and Find Full Text PDF

The interplay of structural, orbital, charge, and spin degrees of freedom is at the heart of many emergent phenomena, including superconductivity. Unraveling the underlying forces of such novel phases is a great challenge because it not only requires understanding each of these degrees of freedom, it also involves accounting for the interplay between them. Cerium-based heavy fermion compounds are an ideal playground for investigating these interdependencies, and we present evidence for a correlation between orbital anisotropy and the ground states in a representative family of materials.

View Article and Find Full Text PDF

Mating causes decreased life span in female Drosophila. Here we report that mifepristone blocked this effect, yielding life span increases up to +68%. Drug was fed to females after mating, in the absence of males, demonstrating function in females.

View Article and Find Full Text PDF

Using X-ray absorption spectroscopy and electron energy loss spectroscopy with atomic-scale spatial resolution, experimental evidence for charge transfer at the interface between the Mott insulators Sm2 CuO4 and LaFeO3 is obtained. As a consequence of the charge transfer, the Sm2 CuO4 is doped with electrons and thus epitaxial Sm2 CuO4 /LaFeO3 heterostructures become metallic.

View Article and Find Full Text PDF