Therapeutic intervention for Parkinson's disease (PD) via deep brain stimulation (DBS) represents the current paradigm for managing the advanced stages of the disease in patients when treatment with pharmaceuticals becomes inadequate. Although DBS is the prevailing therapy in these cases, the overall effectiveness and reliability of DBS can be diminished over time due to hardware complications and biocompatibility issues with the electronic implants. To achieve a lifetime solution, we envision that the next generation of neural implants will be entirely 'biological' and 'autologous', both physically and functionally.
View Article and Find Full Text PDFNeuromodulation of central and peripheral neural circuitry brings together neurobiologists and neural engineers to develop advanced neural interfaces to decode and recapitulate the information encoded in the nervous system. Dysfunctional neuronal networks contribute not only to the pathophysiology of neurological diseases, but also to numerous metabolic disorders. Many regions of the central nervous system (CNS), especially within the hypothalamus, regulate metabolism.
View Article and Find Full Text PDF