Publications by authors named "Nicholas B Watson"

Alkene aminoarylation with arylsulfonylacetamides via a visible-light mediated radical Smiles-Truce rearrangement represents a convenient approach to the privileged arylethylamine pharmacaphore traditionally generated by circuitous, multi-step sequences. Herein, we report detailed synthetic, spectroscopic, kinetic, and computational studies designed to interrogate the proposed mechanism, including the key aryl transfer event. The data are consistent with a rate-limiting 1,4-aryl migration occurring either via a stepwise process involving a radical Meisenheimer-like intermediate or in a concerted fashion dependent on both arene electronics and alkene sterics.

View Article and Find Full Text PDF

Proteins required for translesion DNA synthesis localize in nuclear foci of cells with replication-blocking lesions. The dynamics of this process were examined in human cells with fluorescence-based biophysical techniques. Photobleaching recovery and raster image correlation spectroscopy experiments indicated that involvement in the nuclear foci reduced the movement of RAD18 from diffusion-controlled to virtual immobility.

View Article and Find Full Text PDF

Endogenously generated reactive oxygen species and genotoxic carcinogens can covalently modify bases in cellular DNA. If not recognized and removed prior to S-phase of the cell cycle, such modifications can block DNA replication fork progression. If blocked forks are not are not resolved, they result in double strand breaks and cell death.

View Article and Find Full Text PDF

Mutations in DNA are generally considered to have an etiologic role in the development of cancer. If so, it follows that reducing the frequency of such mutations will reduce the incidence of cancer induced by mutagens. Recent advances in elucidating the molecular mechanisms of carcinogen-induced mutagenesis indicate that replication of DNA templates that contain replication-blocking adducts is accomplished with error-prone DNA polymerases.

View Article and Find Full Text PDF

The REV1 gene encodes a Y-family DNA polymerase that has been postulated to have both catalytic and structural functions in translesion replication past UV photoproducts in mammalian cells. To examine if REV1 is implicated in DNA damage tolerance mechanisms after exposure of human cells to a chemical carcinogen, we generated a plasmid expressing REV1 protein fused at its C-terminus with green fluorescent protein (GFP). In transient transfection experiments, virtually all of the transfected cells had a diffuse nuclear pattern in the absence of carcinogen exposure.

View Article and Find Full Text PDF

In the budding yeast Saccharomyces cerevisiae, DNA polymerase zeta (pol zeta) is responsible for the great majority of mutations generated during error-prone translesion replication of DNA that contains UV-induced lesions. The catalytic subunit of pol zeta is encoded by the Rev3 gene. The orthologue of Rev3 has been cloned from higher eukaryotic cells, including human, but its role in mutagenesis and carcinogenesis remains obscure.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session1m3npiop4ddjen1gab5v5m6r8mf2p45e): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once