Publications by authors named "Nicholas B Last"

Fluoride/proton antiporters of the CLC family combat F toxicity in bacteria by exporting this halide from the cytoplasm. These transporters belong to the widespread CLC superfamily but display transport properties different from those of the well-studied Cl/H antiporters. Here, we report a structural and functional investigation of these F-transport proteins.

View Article and Find Full Text PDF

Fluoride ion channels of the Fluc family combat toxicity arising from accumulation of environmental F. Although crystal structures are known, the densely packed pore region has precluded delineation of the ion pathway. Here we chart out the Fluc pore and characterize its chemical requirements for transport.

View Article and Find Full Text PDF

The Fluc family of F(-) ion channels protects prokaryotes and lower eukaryotes from the toxicity of environmental F(-). In bacteria, these channels are built as dual-topology dimers whereby the two subunits assemble in antiparallel transmembrane orientation. Recent crystal structures suggested that Fluc channels contain two separate ion-conduction pathways, each with two F(-) binding sites, but no functional correlates of this unusual architecture have been reported.

View Article and Find Full Text PDF

Anion channels and antiporters of the ClC superfamily have been found to be exclusively dimeric in nature, even though each individual monomer contains the complete transport pathway. Here, we describe the destabilization through mutagenesis of the dimer interface of a bacterial F(-)/H(+) antiporter, ClC(F)-eca. Several mutations that produce monomer/dimer equilibrium of the normally dimeric transporter were found, simply by shortening a hydrophobic side chain in some cases.

View Article and Find Full Text PDF

Three families of membrane-active peptides are commonly found in nature and are classified according to their initial apparent activity. Antimicrobial peptides are ancient components of the innate immune system and typically act by disruption of microbial membranes leading to cell death. Amyloid peptides contribute to the pathology of diverse diseases from Alzheimer's to type II diabetes.

View Article and Find Full Text PDF

Poration of bacterial membranes by antimicrobial peptides such as magainin 2 is a significant activity performed by innate immune systems. Pore formation by soluble forms of amyloid proteins such as islet amyloid polypeptide (IAPP) is implicated in cell death in amyloidoses. Similarities in structure and poration activity of these two systems suggest a commonality of mechanism.

View Article and Find Full Text PDF

Amyloid fiber formation is correlated with pathology in many diseases, including Alzheimer's, Parkinson's, and type II diabetes. Although β-sheet-rich fibrillar protein deposits define this class of disorder, increasing evidence points toward small oligomeric species as being responsible for cell dysfunction and death. The molecular mechanism by which this occurs is unknown, but likely involves the interaction of these species with biological membranes, with a subsequent loss of integrity.

View Article and Find Full Text PDF