We show that commercially sourced n-channel silicon field-effect transistors (nFETs) operating above their threshold voltage with closed loop feedback to maintain a constant channel current allow a pH readout resolution of (7.2 ± 0.3) × 10 at a bandwidth of 10 Hz, or ≈3-fold better than the open loop operation commonly employed by integrated ion-sensitive field-effect transistors (ISFETs).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2020
Aided by efforts to improve their speed and efficiency, molecular dynamics (MD) simulations provide an increasingly powerful tool to study the structure-function relationship of pentameric ligand-gated ion channels (pLGICs). However, accurate reporting of the channel state and observation of allosteric regulation by agonist binding with MD remains difficult due to the timescales necessary to equilibrate pLGICs from their artificial and crystalized conformation to a more native, membrane-bound conformation in silico. Here, we perform multiple all-atom MD simulations of the homomeric 5-hydroxytryptamine 3A (5-HT) serotonin receptor for 15 to 20 μs to demonstrate that such timescales are critical to observe the equilibration of a pLGIC from its crystalized conformation to a membrane-bound conformation.
View Article and Find Full Text PDFWe have demonstrated atomically thin, quantum capacitance-limited, field-effect transistors (FETs) that enable the detection of pH changes with 75-fold higher sensitivity (≈4.4 V per pH) over the Nernst value of 59 mV per pH at room temperature when used as a biosensor. The transistors, which are fabricated from monolayer films of MoS, use a room temperature ionic liquid (RTIL) in place of a conventional oxide gate dielectric and exhibit very low intrinsic noise resulting in a pH resolution of 92 × 10 at 10 Hz.
View Article and Find Full Text PDFMetal-mediated exfoliation has been demonstrated as a promising approach for obtaining large-area flakes of two-dimensional (2D) materials to fabricate prototypical nanoelectronics. However, several processing challenges related to organic contamination at the interface of a 2D material and gate oxide must be overcome to realize robust devices with high yields. Here, we demonstrate an optimized process to realize high-performance field-effect transistor (FET) arrays from large-area (∼5000 μm), monolayer MoS with a yield of 85%.
View Article and Find Full Text PDFMolecular dynamics simulations were performed to describe the function of the ion-channel-forming toxin α-hemolysin (αHL) in lipid membranes that were composed of either 1,2-diphytanoyl-sn-glycero-3-phospho-choline or 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-choline. The simulations highlight the importance of lipid type in maintaining αHL structure and function, enabling direct comparison to experiments for biosensing applications. We determined that although the two lipids studied are similar in structure, 1,2-diphytanoyl-sn-glycero-3-phospho-choline membranes better match the hydrophobic thickness of αHL compared to 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-choline membranes.
View Article and Find Full Text PDF