Publications by authors named "Nicholas A Senger"

Deubiquitylating enzymes (DUBs) remove ubiquitin (Ub) from various cellular proteins and render eukaryotic ubiquitylation a dynamic process. The misregulation of protein ubiquitylation is associated with many human diseases, and there is an urgent need to identify specific DUBs associated with therapeutically relevant targets of Ub. We report the development of two facile selenocysteine-based strategies to generate the DUB probe dehydroalanine (Dha).

View Article and Find Full Text PDF

Access to protein substrates homogenously modified by ubiquitin (Ub) is critical for biophysical and biochemical investigations aimed at deconvoluting the myriad biological roles for Ub. Current chemical strategies for protein ubiquitylation, however, employ temporary ligation auxiliaries that are removed under harsh denaturing conditions and have limited applicability. We report an unprecedented aromatic thiol-mediated N-O bond cleavage and its application towards native chemical ubiquitylation with the ligation auxiliary 2-aminooxyethanethiol.

View Article and Find Full Text PDF

The stabilities of the C6-centered carbanions derived from 1,3-dimethyluracil, N-methyl-2-pyridone, and N-methyl-4-pyridone were systematically investigated in the gas phase and in DMSO and water solutions. The stabilities of the carbanions in the gas phase and DMSO were directly measured through their reactions with carbon acids with known proton affinity or p values. The stabilities of the carbanions in DMSO were also probed through their kinetic isotope effects of protonation over deuteriation using acids with different acidity.

View Article and Find Full Text PDF

An improved method for the synthesis of N1-substituted orotic acid derivatives is reported. The method involves sequential incorporation of nitrogen atoms to the pyrimidine structure from simple starting materials and thus allows the synthesis of N1-substituted orotic acid derivatives with single N label at either N-1 or N-3.

View Article and Find Full Text PDF

The "element effect" in nucleophilic aromatic substitution reactions (S(N)Ar) is characterized by the leaving group order, F > NO(2) > Cl ≈ Br > I, in activated aryl halides. Multiple causes for this result have been proposed. Experimental evidence shows that the element effect order in the reaction of piperidine with 2,4-dinitrophenyl halides in methanol is governed by the differences in enthalpies of activation.

View Article and Find Full Text PDF