Publications by authors named "Nicholas A Roberts"

A common practice for those operating in cold environments includes repetitive glove doffing and donning to perform specific tasks, which creates a repetitive cycle of hand cooling and rewarming. This study aimed to determine the influence of intraday repeated hand cooling on cold-induced vasodilation (CIVD), sympathetic activation, and finger/hand temperature recovery. Eight males and two females (mean ± SD age: 28 ± 5 year; height: 181 ± 9 cm; weight: 79.

View Article and Find Full Text PDF

Wave-packet simulations, regarded as phonon dynamics in the literature, have been used to explore interface conductance problems and to study the frequency-based dynamics of systems of particles. In this work we introduce an extension of the method to improve the postsimulation analysis and to add an energy aspect to the definition of a wave packet. In a wave-packet simulation the most populated frequency activated with the wave packet is known through knowledge of the wave number implemented in the atom displacement equation.

View Article and Find Full Text PDF

Recent scientific advances in the utilization of metallic nanoparticle for enhanced energy conversion efficiency, improved optical device performance, and high-density data storage have demonstrated the potential benefit of their use in industrial applications. These applications require precise control over nanoparticle size, spacing, and sometimes shape. These requirements have resulted in the use of time and cost intensive processing steps to produce nanoparticles, thus making the transition to industrial application unrealistic.

View Article and Find Full Text PDF

Platinum-carbon deposits made via electron-beam-induced deposition were purified via a pulsed laser-induced oxidation reaction and erosion of the amorphous carbon to form pure platinum. Purification proceeds from the top down and is likely catalytically facilitated via the evolving platinum layer. Thermal simulations suggest a temperature threshold of ∼485 K, and the purification rate is a function of the PtC5 thickness (80-360 nm) and laser pulse width (1-100 μs) in the ranges studied.

View Article and Find Full Text PDF

Nanowires with higher tungsten (W) concentration and enhanced conductivity were grown via the laser assisted electron beam induced deposition (LAEBID) technique using tungsten hexacarbonyl W(CO)6 as the gas precursor. Periodic, pulsed laser irradiation facilitated CO desorption during growth by heating the deposit. Deposit purity improved with laser pulse width up to the threshold for pyrolytic laser chemical vapor deposition (LCVD).

View Article and Find Full Text PDF

The directed assembly of arrayed nanoparticles is demonstrated by dictating the flow of a liquid phase filament on the nanosecond time scale. Results for the assembly of Ni nanoparticles on SiO2 are presented. Previously, we have implemented a sinusoidal perturbation on the edge of a solid phase Ni, thin film strip to tailor nanoparticle assembly.

View Article and Find Full Text PDF

We introduce a laser assisted electron beam induced deposition (LAEBID) process which is a nanoscale direct write synthesis method that integrates an electron beam induced deposition process with a synchronized pulsed laser step to induce thermal desorption of reaction by-products. Localized, spatially overlapping electron and photon pulses enable the thermal desorption of the reaction by-product while mitigating issues associated with bulk substrate heating, which can shorten the precursor residence time and distort pattern fidelity due to thermal drift. Current results demonstrate purification of platinum deposits (reduced carbon content by ~50%) with the addition of synchronized laser pulses as well as a significant reduction in deposit resistivity.

View Article and Find Full Text PDF

Using pump-probe electron microscopy techniques, the dewetting of thin nickel films exposed to a pulsed nanosecond laser was monitored at tens of nanometers spatial and nanosecond time scales to provide insight into the liquid-phase assembly dynamics. Thickness-dependent and correlated time and length scales indicate that a spinodal instability drives the assembly process. Measured lifetimes of the liquid metal are consistent with finite-difference simulations of the laser-irradiated film and are consistent with estimated and observed spinodal time scales.

View Article and Find Full Text PDF