IEEE Trans Pattern Anal Mach Intell
October 2020
Camera pose estimation is an important problem in computer vision, with applications as diverse as simultaneous localisation and mapping, virtual/augmented reality and navigation. Common techniques match the current image against keyframes with known poses coming from a tracker, directly regress the pose, or establish correspondences between keypoints in the current image and points in the scene in order to estimate the pose. In recent years, regression forests have become a popular alternative to establish such correspondences.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
November 2018
Reconstructing dense, volumetric models of real-world 3D scenes is important for many tasks, but capturing large scenes can take significant time, and the risk of transient changes to the scene goes up as the capture time increases. These are good reasons to want instead to capture several smaller sub-scenes that can be joined to make the whole scene. Achieving this has traditionally been difficult: joining sub-scenes that may never have been viewed from the same angle requires a high-quality camera relocaliser that can cope with novel poses, and tracking drift in each sub-scene can prevent them from being joined to make a consistent overall scene.
View Article and Find Full Text PDFIn clinical applications where structural asymmetries between homologous shapes have been correlated with pathology, the questions of definition and quantification of "asymmetry" arise naturally. When not only the degree but the position of deformity is thought relevant, asymmetry localization must also be addressed. Asymmetries between paired shapes have already been formulated in terms of (nonrigid) diffeomorphisms between the shapes.
View Article and Find Full Text PDF