Purpose: In glioblastoma, the therapeutically intractable and resistant phenotypes can be derived from glioma stem cells, which often have different underlying mechanisms from non-stem glioma cells. Aberrant signaling across the EGFR-PTEN-AKT-mTOR pathways have been shown as common drivers of glioblastoma. Revealing the inter and intra-cellular heterogeneity within glioma stem cell populations in relations to signaling patterns through these pathways may be key to precision diagnostic and therapeutic targeting of these cells.
View Article and Find Full Text PDFCancer-associated fibroblasts (CAFs) play a key role in metabolic reprogramming and are well-established contributors to drug resistance in colorectal cancer (CRC). To exploit this metabolic crosstalk, we integrated a systems biology approach that identified key metabolic targets in a data-driven method and validated them experimentally. This process involved a novel machine learning-based method to computationally screen, in a high-throughput manner, the effects of enzyme perturbations predicted by a computational model of CRC metabolism.
View Article and Find Full Text PDFA large number of synaptic proteins have been recurrently associated with complex brain disorders. One of these proteins, the Traf and Nck interacting kinase (TNIK), is a postsynaptic density (PSD) signaling hub, with many variants reported in neurodevelopmental disorder (NDD) and psychiatric disease. While rodent models of TNIK dysfunction have abnormal spontaneous synaptic activity and cognitive impairment, the role of mutations found in patients with TNIK protein deficiency and TNIK protein kinase activity during early stages of neuronal and synapse development has not been characterized.
View Article and Find Full Text PDFMitochondrial DNA single nucleotide polymorphisms (mtSNPs) have been associated with a reduced risk of developing Parkinson's disease (PD), yet the underlying mechanisms remain elusive. In this study, we investigate the functional role of a PD-associated mtSNP that impacts the mitochondrial-derived peptide (MDP) Small Humanin-like Peptide 2 (SHLP2). We identify m.
View Article and Find Full Text PDFBackground: There is a pressing need for improved methods to identify effective therapeutics for diseases. Many computational approaches have been developed to repurpose existing drugs to meet this need. However, these tools often output long lists of candidate drugs that are difficult to interpret, and individual drug candidates may suffer from unknown off-target effects.
View Article and Find Full Text PDFActivation of β-adrenergic receptors (β-ARs) not only enhances learning and memory but also facilitates the induction of long-term potentiation (LTP), a form of synaptic plasticity involved in memory formation. To identify the mechanisms underlying β-AR-dependent forms of LTP we examined the effects of the β-AR agonist isoproterenol on LTP induction at excitatory synapses onto CA1 pyramidal cells in the ventral hippocampus. LTP induction at these synapses is inhibited by activation of SK-type K channels, suggesting that β-AR activation might facilitate LTP induction by inhibiting SK channels.
View Article and Find Full Text PDFPancreatic β-cells respond to increased extracellular glucose levels by initiating a metabolic shift. That change in metabolism is part of the process of glucose-stimulated insulin secretion and is of particular interest in the context of diabetes. However, we do not fully understand how the coordinated changes in metabolic pathways and metabolite products influence insulin secretion.
View Article and Find Full Text PDFObjective: Coactivator-associated arginine methyltransferase 1 (CARM1) catalyzes the methylation of arginine residues on target proteins to regulate critical processes in health and disease. A mechanistic understanding of the role(s) of CARM1 in skeletal muscle biology is only gradually emerging. The purpose of this study was to elucidate the function of CARM1 in regulating the maintenance and plasticity of skeletal muscle.
View Article and Find Full Text PDFNatural killer (NK) cells are cytotoxic lymphocytes that play a critical role in the innate immune system. Although cytokine signaling is crucial for the development, expansion, and cytotoxicity of NK cells, the signaling pathways stimulated by cytokines are not well understood. Here, we sought to compare the early signaling dynamics induced by the cytokines interleukin (IL)-2 and IL-15 using liquid chromatography-mass spectrometry (LC-MS)-based phospho-proteomics.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2022
Genetic mutations have long been recognized as drivers of cancer drug resistance, but recent work has defined additional non-genetic mechanisms of plasticity, wherein cancer cells assume a drug resistant phenotype marked by altered epigenetic and transcriptional states. Currently, little is known about the real-time, dynamic nature of this phenotypic shift. Using a bladder cancer model of nongenetic plasticity, we discovered that rapid transition to drug resistance entails upregulation of mitochondrial gene expression and a corresponding metabolic shift towards the tricarboxylic acid cycle and oxidative phosphorylation.
View Article and Find Full Text PDFHuman pluripotent stem cells (hPSCs) can self-renew indefinitely or can be induced to differentiate. We previously showed that exogenous glutamine (Gln) withdrawal biased hPSC differentiation toward ectoderm and away from mesoderm. We revealed that, although all three germ lineages are capable of de novo Gln synthesis, only ectoderm generates sufficient Gln to sustain cell viability and differentiation, and this finding clarifies lineage fate restrictions under Gln withdrawal.
View Article and Find Full Text PDFCorrectly identifying candidate drugs for protein targets is crucial for drug discovery. Despite the importance of this problem for the pharmaceutical industry, chemical screening remains a challenging task, and drug-target misidentification may contribute to failures in drug development. In their recent study, Sauer and colleagues (Holbrook-Smith et al, 2022) demonstrate proof-of-concept for a new way to identify drug-target interactions using high-throughput metabolomics, potentially paving the way towards a universal method for predicting drug-target relationships.
View Article and Find Full Text PDFColorectal cancer (CRC) is a major cause of morbidity and mortality in the United States. Tumor-stromal metabolic crosstalk in the tumor microenvironment promotes CRC development and progression, but exactly how stromal cells, in particular cancer-associated fibroblasts (CAFs), affect the metabolism of tumor cells remains unknown. Here we take a data-driven approach to investigate the metabolic interactions between CRC cells and CAFs, integrating constraint-based modeling and metabolomic profiling.
View Article and Find Full Text PDFSenescence is a permanent cell cycle arrest that occurs in response to cellular stress and promotes age-related disease. Because senescence differs greatly depending on cell type and senescence inducer, continued progress in the characterization of senescent cells is needed. Here, we analyzed primary human mammary epithelial cells (HMECs), a model system for aging and cancer, using mass spectrometry-based proteomics.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2021
Comprehensive modeling of a whole cell requires an integration of vast amounts of information on various aspects of the cell and its parts. To divide and conquer this task, we introduce Bayesian metamodeling, a general approach to modeling complex systems by integrating a collection of heterogeneous input models. Each input model can in principle be based on any type of data and can describe a different aspect of the modeled system using any mathematical representation, scale, and level of granularity.
View Article and Find Full Text PDFThe metabolic reprogramming of cancer cells creates metabolic vulnerabilities that can be therapeutically targeted. However, our understanding of metabolic dependencies and the pathway crosstalk that creates these vulnerabilities in cancer cells remains incomplete. Here, by integrating gene expression data with genetic loss-of-function and pharmacological screening data from hundreds of cancer cell lines, we identified metabolic vulnerabilities at the level of pathways rather than individual genes.
View Article and Find Full Text PDFHealthy aging can be promoted by enhanced metabolic fitness and physical capacity. Mitochondria are chief metabolic organelles with strong implications in aging that also coordinate broad physiological functions, in part, using peptides that are encoded within their independent genome. However, mitochondrial-encoded factors that actively regulate aging are unknown.
View Article and Find Full Text PDFLocalized drug delivery holds great promise as a means of circumventing traditional chemotherapy side effects associated with high toxicity and prolonged treatments. Nanosized carriers (i.e.
View Article and Find Full Text PDFMotivation: Gene Set Enrichment Analysis (GSEA) is an algorithm widely used to identify statistically enriched gene sets in transcriptomic data. However, GSEA cannot examine the enrichment of two gene sets or pathways relative to one another. Here we present Differential Gene Set Enrichment Analysis (DGSEA), an adaptation of GSEA that quantifies the relative enrichment of two gene sets.
View Article and Find Full Text PDFProtein arginine methylation regulates diverse biological processes including signaling, metabolism, splicing, and transcription. Despite its important biological roles, arginine dimethylation remains an understudied post-translational modification. Partly, this is because the two forms of arginine dimethylation, asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA), are isobaric and therefore indistinguishable by traditional mass spectrometry techniques.
View Article and Find Full Text PDFCell proliferation and inflammation are two metabolically demanding biological processes. How these competing processes are selectively executed in the same cell remains unknown. Here, we report that the enzyme carbamoyl-phosphate synthetase, aspartyl transcarbamoylase, and dihydroorotase (CAD) deamidates the RelA subunit of NF-κB in cancer cells to promote aerobic glycolysis and fuel cell proliferation in tumorigenesis.
View Article and Find Full Text PDFOncogenes can create metabolic vulnerabilities in cancer cells. We tested how AKT (herein referring to AKT1) and MYC affect the ability of cells to shift between respiration and glycolysis. Using immortalized mammary epithelial cells, we discovered that constitutively active AKT, but not MYC, induced cell death in galactose culture, where cells rely on oxidative phosphorylation for energy generation.
View Article and Find Full Text PDFMetabolic reprogramming in cancer cells can increase their dependence on metabolic substrates such as glucose. As such, the vulnerability of cancer cells to glucose deprivation creates an attractive opportunity for therapeutic intervention. Because it is not possible to starve tumors of glucose , here we sought to identify the mechanisms in glucose deprivation-induced cancer cell death and then designed inhibitor combinations to mimic glucose deprivation-induced cell death.
View Article and Find Full Text PDFProtein methylation has been implicated in many important biological contexts including signaling, metabolism, and transcriptional control. Despite the importance of this post-translational modification, the global analysis of protein methylation by mass spectrometry-based proteomics has not been extensively studied because of the lack of robust, well-characterized techniques for methyl peptide enrichment. Here, to better investigate protein methylation, we compared two methods for methyl peptide enrichment: immunoaffinity purification (IAP) and high pH strong cation exchange (SCX).
View Article and Find Full Text PDF