Publications by authors named "Nicholas A DiProspero"

Y-27632, an inhibitor of the Rho-associated kinase ROCK, is a therapeutic lead for Huntington disease (HD). The downstream targets that mediate its inhibitory effects on huntingtin (Htt) aggregation and toxicity are unknown. We have identified profilin, a small actin-binding factor that also interacts with Htt, as being a direct target of the ROCK1 isoform.

View Article and Find Full Text PDF

A prominent feature of late-onset neurodegenerative diseases is accumulation of misfolded protein in vulnerable neurons. When levels of misfolded protein overwhelm degradative pathways, the result is cellular toxicity and neurodegeneration. Cellular mechanisms for degrading misfolded protein include the ubiquitin-proteasome system (UPS), the main non-lysosomal degradative pathway for ubiquitinated proteins, and autophagy, a lysosome-mediated degradative pathway.

View Article and Find Full Text PDF

Huntington's disease (HD) is caused by a polyglutamine repeat expansion in the N-terminus of the huntingtin protein. Huntingtin is normally present in the cytoplasm where it may interact with structural and synaptic elements. The mechanism of HD pathogenesis remains unknown but studies indicate a toxic gain-of-function possibly through aberrant protein interactions.

View Article and Find Full Text PDF

Huntington's disease (HD) is caused by a pathological expansion of a CAG repeat in the first exon of the gene coding for huntingtin, resulting in an abnormally long polyglutamine stretch. Despite its widespread expression, mutant huntingtin leads to selective neuronal loss in the striatum and cortex. Here we report that the neurospecific phosphoprotein PACSIN 1, which has been implicated as playing a central role in synaptic vesicle recycling, interacts with huntingtin via its C-terminal SH3 domain.

View Article and Find Full Text PDF